Jundishapur Journal of Microbiology

Published by: Kowsar

Novel Formulated Zinc Oxide Nanoparticles Reduce Hwp1 Gene Expression Involved in Biofilm Formation in Candida albicans with Minimum Cytotoxicity Effect on Human Cells

Peyman Aslani 1 , Shahla Roudbar Mohammadi 1 , * and Maryam Roudbary 2
Authors Information
1 Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2 Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
Article information
  • Jundishapur Journal of Microbiology: October 2018, 11 (10); e79562
  • Published Online: September 16, 2018
  • Article Type: Research Article
  • Received: May 22, 2018
  • Accepted: May 25, 2018
  • DOI: 10.5812/jjm.79562

To Cite: Aslani P , Roudbar Mohammadi S, Roudbary M. Novel Formulated Zinc Oxide Nanoparticles Reduce Hwp1 Gene Expression Involved in Biofilm Formation in Candida albicans with Minimum Cytotoxicity Effect on Human Cells, Jundishapur J Microbiol. 2018 ; 11(10):e79562. doi: 10.5812/jjm.79562.

Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Barad S, Roudbary M, Omran AN, Daryasari MP. Preparation and characterization of ZnO nanoparticles coated by chitosan-linoleic acid; fungal growth and biofilm assay. Bratisl Lek Listy. 2017;118(3):169-74. doi: 10.4149/BLL_2017_034. [PubMed: 28319414].
  • 2. Karimiyan A, Najafzadeh H, Ghorbanpour M, Hekmati-Moghaddam SH. Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan J Res Med Sci. 2015;17(10). doi: 10.17795/zjrms-2179.
  • 3. Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(Pt 1):10-24. doi: 10.1099/jmm.0.045054-0. [PubMed: 23180477].
  • 4. Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clin Microbiol Rev. 2010;23(2):253-73. doi: 10.1128/cmr.00076-09.
  • 5. Naglik JR, Fostira F, Ruprai J, Staab JF, Challacombe SJ, Sundstrom P. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol. 2006;55(Pt 10):1323-7. doi: 10.1099/jmm.0.46737-0. [PubMed: 17005778]. [PubMed Central: PMC3244616].
  • 6. Silva S, Rodrigues CF, Araujo D, Rodrigues ME, Henriques M. Candida species biofilms' antifungal resistance. J Fungi (Basel). 2017;3(1). doi: 10.3390/jof3010008. [PubMed: 29371527]. [PubMed Central: PMC5715972].
  • 7. Khajeh E, Hosseini Shokouh SJ, Rajabibazl M, Roudbary M, Rafiei S, Aslani P, et al. Antifungal effect of Echinophora platyloba on expression of CDR1 and CDR2 genes in fluconazole-resistant Candida albicans. Br J Biomed Sci. 2016;73(1):44-8. doi: 10.1080/09674845.2016.1155269. [PubMed: 27182677].
  • 8. Hong RY, Li JH, Chen LL, Liu DQ, Li HZ, Zheng Y, et al. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Tech. 2009;189(3):426-32. doi: 10.1016/j.powtec.2008.07.004.
  • 9. Kolodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: A review. Materials (Basel). 2014;7(4):2833-81. doi: 10.3390/ma7042833. [PubMed: 28788596]. [PubMed Central: PMC5453364].
  • 10. Kumar SS, Venkateswarlu P, Rao VR, Rao GN. Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett. 2013;3(1). doi: 10.1186/2228-5326-3-30.
  • 11. Ifuku S, Ikuta A, Egusa M, Kaminaka H, Izawa H, Morimoto M, et al. Preparation of high-strength transparent chitosan film reinforced with surface-deacetylated chitin nanofibers. Carbohydr Polym. 2013;98(1):1198-202. doi: 10.1016/j.carbpol.2013.07.033. [PubMed: 23987464].
  • 12. Martinez-Camacho AP, Cortez-Rocha MO, Castillo-Ortega MM, Burgos-Hernandez A, Ezquerra-Brauer JM, Plascencia-Jatomea M. Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polymer Int. 2011;60(12):1663-9. doi: 10.1002/pi.3174.
  • 13. Salaberria AM, Fernandes SC, Diaz RH, Labidi J. Processing of alpha-chitin nanofibers by dynamic high pressure homogenization: Characterization and antifungal activity against A. niger. Carbohydr Polym. 2015;116:286-91. doi: 10.1016/j.carbpol.2014.04.047. [PubMed: 25458302].
  • 14. Li JJ, Muralikrishnan S, Ng CT, Yung LY, Bay BH. Nanoparticle-induced pulmonary toxicity. Exp Biol Med (Maywood). 2010;235(9):1025-33. doi: 10.1258/ebm.2010.010021. [PubMed: 20719818].
  • 15. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916. doi: 10.1155/2013/942916. [PubMed: 24027766]. [PubMed Central: PMC3762079].
  • 16. Roudbary M, Daneshmand S, Hajimorad M, Roudbarmohammadip S, Hassan ZM. Immunomodulatory effect of beta-Glucan on Peritoneal Macrophages of Bab1/c Mice. Pol J Microbiol. 2015;64(2):175-9. [PubMed: 26373179].
  • 17. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, et al. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608-19. doi: 10.1021/jp712087m. [PubMed: 18831567].
  • 18. Ribeiro-Dias F, Russo M, Nascimento FR, Barbuto JA, Timenetsky J, Jancar S. Thioglycollate-elicited murine macrophages are cytotoxic to Mycoplasma arginini-infected YAC-1 tumor cells. Braz J Med Biol Res. 1998;31(11):1425-8. [PubMed: 9921279].
  • 19. Roudbarmohammadi S, Roudbary M, Bakhshi B, Katiraee F, Mohammadi R, Falahati M. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Adv Biomed Res. 2016;5:105. doi: 10.4103/2277-9175.183666. [PubMed: 27376044]. [PubMed Central: PMC4918214].
  • 20. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2(7). e63. doi: 10.1371/journal.ppat.0020063. [PubMed: 16839200]. [PubMed Central: PMC1487173].
  • 21. Nobile CJ, Mitchell AP. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol. 2006;8(9):1382-91. doi: 10.1111/j.1462-5822.2006.00761.x. [PubMed: 16848788].
  • 22. Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol. 2003;11(1):30-6. doi: 10.1016/s0966-842x(02)00002-1.
  • 23. Sundstrom P. Adhesion in Candida spp. Cell Microbiol. 2002;4(8):461-9. [PubMed: 12174081].
  • 24. Staab JF, Bahn YS, Tai CH, Cook PF, Sundstrom P. Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J Biol Chem. 2004;279(39):40737-47. doi: 10.1074/jbc.M406005200. [PubMed: 15262971].
  • 25. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: Chemical composition and role in drug resistance. J Med Microbiol. 2006;55(Pt 8):999-1008. doi: 10.1099/jmm.0.46569-0. [PubMed: 16849719].
  • 26. Pohl CH, Kock JLF, Thibane VS. Antifungal free fatty acids: A review. Sci Microb Pathog: Commun Curr Res Tech Adv. 2011;3:61-71.
  • 27. Quiros J, Boltes K, Rosal R. Bioactive applications for electrospun fibers. Polymer Rev. 2016;56(4):631-67. doi: 10.1080/15583724.2015.1136641.
  • 28. Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, et al. Silver colloidal nanoparticles: Effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms. J Appl Microbiol. 2013;114(4):1175-83. doi: 10.1111/jam.12102. [PubMed: 23231706].
  • 29. Pandiselvi K, Thambidurai S. Synthesis, characterization, and antimicrobial activity of chitosan–zinc oxide/polyaniline composites. Mater Sci Semicond Process. 2015;31:573-81. doi: 10.1016/j.mssp.2014.12.044.
  • 30. Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep. 2016;6:26667. doi: 10.1038/srep26667. [PubMed: 27220400]. [PubMed Central: PMC4879543].
  • 31. Wady AF, Machado AL, Zucolotto V, Zamperini CA, Berni E, Vergani CE. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. J Appl Microbiol. 2012;112(6):1163-72. doi: 10.1111/j.1365-2672.2012.05293.x. [PubMed: 22452416].
  • 32. Jothiprakasam V, Sambantham M, Chinnathambi S, Vijayaboopathi S. Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA. Arch Oral Biol. 2017;73:21-4. doi: 10.1016/j.archoralbio.2016.09.003. [PubMed: 27653145].
  • 33. Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R. EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C. 2009;113(36):15997-6001. doi: 10.1021/jp904864g.
  • 34. Lipovsky A, Nitzan Y, Gedanken A, Lubart R. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology. 2011;22(10):105101. doi: 10.1088/0957-4484/22/10/105101. [PubMed: 21289395].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments