Jundishapur Journal of Microbiology

Published by: Kowsar

Anticandidal Potential of Endophytic Bacteria Isolated from Dryopteris uniformis (Makino)

Gitishree Das 1 , Seonjoo Park 2 , Jinhee Choi 3 and Kwang Hyun Baek 3 , *
Authors Information
1 Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Seoul, Republic of Korea
2 Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
3 Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
Article information
  • Jundishapur Journal of Microbiology: January 31, 2019, 12 (1); e69878
  • Published Online: December 31, 2018
  • Article Type: Research Article
  • Received: April 25, 2018
  • Revised: November 21, 2018
  • Accepted: December 13, 2018
  • DOI: 10.5812/jjm.69878

To Cite: Das G , Park S , Choi J , Baek K H. Anticandidal Potential of Endophytic Bacteria Isolated from Dryopteris uniformis (Makino), Jundishapur J Microbiol. 2019 ; 12(1):e69878. doi: 10.5812/jjm.69878.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Footnotes
References
  • 1. Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clin Microbiol Rev. 2010;23(2):253-73. doi: 10.1128/CMR.00076-09. [PubMed: 20375352]. [PubMed Central: PMC2863365].
  • 2. Shibata N, Kobayashi H, Suzuki S. Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(6):250-65. doi: 10.2183/pjab.88.250. [PubMed: 22728440]. [PubMed Central: PMC3410142].
  • 3. Priest SJ, Lorenz MC. Characterization of virulence-related phenotypes in candida species of the CUG clade. Eukaryot Cell. 2015;14(9):931-40. doi: 10.1128/EC.00062-15. [PubMed: 26150417]. [PubMed Central: PMC4551586].
  • 4. Wisplinghoff H, Ebbers J, Geurtz L, Stefanik D, Major Y, Edmond MB, et al. Nosocomial bloodstream infections due to Candida spp. in the USA: Species distribution, clinical features and antifungal susceptibilities. Int J Antimicrob Agents. 2014;43(1):78-81. doi: 10.1016/j.ijantimicag.2013.09.005. [PubMed: 24182454].
  • 5. Tyc KM, Herwald SE, Hogan JA, Pierce JV, Klipp E, Kumamoto CA. The game theory of Candida albicans colonization dynamics reveals host status-responsive gene expression. BMC Syst Biol. 2016;10:20. doi: 10.1186/s12918-016-0268-1. [PubMed: 26927448]. [PubMed Central: PMC4772284].
  • 6. Ben-Ami R, Zimmerman O, Finn T, Amit S, Novikov A, Wertheimer N, et al. Heteroresistance to fluconazole is a continuously distributed phenotype among candida glabrata clinical strains associated with in vivo persistence. MBio. 2016;7(4). doi: 10.1128/mBio.00655-16. [PubMed: 27486188]. [PubMed Central: PMC4981708].
  • 7. Nagi M, Tanabe K, Nakayama H, Ueno K, Yamagoe S, Umeyama T, et al. Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata. Autophagy. 2016;12(8):1259-71. doi: 10.1080/15548627.2016.1183080. [PubMed: 27347716]. [PubMed Central: PMC4968229].
  • 8. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183:92-9. doi: 10.1016/j.micres.2015.11.008. [PubMed: 26805622].
  • 9. Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, et al. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res. 2010;17(1):37-50. doi: 10.1093/dnares/dsp026. [PubMed: 20047946]. [PubMed Central: PMC2818188].
  • 10. Yadav M, Yadav A, Kumar S, Sharma D, Yadav J. Evaluation of in vitro antimicrobial potential of endophytic fungi isolated from Eugenia Jambolana Lam. Int J Pharm Pharm Sci. 2014;6(5):208-11.
  • 11. Patriquin DG, Dobereiner J. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol. 1978;24(6):734-42. doi: 10.1139/m78-122. [PubMed: 667740].
  • 12. Christina A, Christapher V, Bhore SJ. Endophytic bacteria as a source of novel antibiotics: An overview. Pharmacogn Rev. 2013;7(13):11-6. doi: 10.4103/0973-7847.112833. [PubMed: 23922451]. [PubMed Central: PMC3731874].
  • 13. Palumbo J, Kobayashi D. Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White J, editors. Microb Endophytes. New York: CRC Press; 2000. p. 213-50.
  • 14. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Canad J Microbiol. 1997;43(10):895-914. doi: 10.1139/m97-131.
  • 15. Bell CR, Dickie GA, Harvey WLG, Chan JWYF. Endophytic bacteria in grapevine. Canad J Microbiol. 1995;41(1):46-53. doi: 10.1139/m95-006.
  • 16. Findlay JA, Buthelezi S, Li G, Seveck M, Miller JD. Insect toxins from an endophytic fungus from Wintergreen. J Nat Prod. 1997;60(11):1214-5. doi: 10.1021/np970222j.
  • 17. El-Deeb B, Fayez K, Gherbawy Y. Isolation and characterization of endophytic bacteria fromPlectranthus tenuiflorusmedicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact. 2013;8(1):56-64. doi: 10.1080/17429145.2012.680077.
  • 18. Rezzonico F, Smits TH, Montesinos E, Frey JE, Duffy B. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol. 2009;9:204. doi: 10.1186/1471-2180-9-204. [PubMed: 19772624]. [PubMed Central: PMC2764716].
  • 19. Roh E, Lee S, Lee Y, Ra D, Choi J, Moon E, et al. Diverse Antibacterial activity of Pectobacterium carotovorum subsp.carotovorum isolated in Korea. J Microbiol Biotechnol. 2009;19(1):42-50. [PubMed: 19190407].
  • 20. Tabbene O, Kalai L, Ben Slimene I, Karkouch I, Elkahoui S, Gharbi A, et al. Anti-candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiol Lett. 2011;316(2):108-14. doi: 10.1111/j.1574-6968.2010.02199.x. [PubMed: 21204933].
  • 21. Audipudi AV, Allu S, Kumar P, Chowdappa P. Plant growth promoting potential of a novel endophytic curtobacterium CEG: Isolation, evaluation and formulation. Annal Biol Res. 2014;5(5):15-21.
  • 22. Bhoonobtong A, Sawadsitang S, Sodngam S, Mongkolthanaruk W. Characterization of endophytic bacteria, Bacillus amyloliquefaciens for antimicrobial agents production. Int Conf Biolog Life Sci. July 23-24; Singapore. 2012. p. 6-11.
  • 23. Selim HMM, Gomaa NM, Essa AMM. Comparative in vitro study of the antimicrobial activities of some endophytic bacteria. Wulfinia J. 2014;21:1-11.
  • 24. Fisher PJ. Survival and spread of the endophyte Stagonospora pteridiicola in Pteridium aquilinum, other ferns and some flowering plants. New Phytolog. 1996;132(1):119-22. doi: 10.1111/j.1469-8137.1996.tb04516.x.
  • 25. de Araújo Barros I, Luiz Araújo W, Lúcio Azevedo J. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae). Braz J Microbiol. 2010;41(4):956-65. doi: 10.1590/s1517-83822010000400014. [PubMed: 24031575]. [PubMed Central: PMC3769766].
  • 26. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, et al. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res. 2010;165(6):437-49. doi: 10.1016/j.micres.2009.11.009. [PubMed: 20116229].
  • 27. de Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol. 2012;43(4):1562-75. doi: 10.1590/s1517-83822012000400041. [PubMed: 24031988]. [PubMed Central: PMC3769033].
  • 28. Ngoma L, Mogatlanyane K, Babalola OO. Screening of endophytic bacteria towards the development of cottage industry: An in vitro study. J Hum Ecol. 2017;47(1):45-63. doi: 10.1080/09709274.2014.11906738.
  • 29. Khanam B, Chandra R. Isolation and identification of endophytic bacteria producing bright red pigment from the dye yielding plant Beta vulgaris L. Int J Pharm Pharm Sci. 2015;7:220-4.
  • 30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9. doi: 10.1093/molbev/mst197. [PubMed: 24132122]. [PubMed Central: PMC3840312].
  • 31. Susilowati R, Sabdono A, Widowati I. Isolation and characterization of bacteria associated with brown algae Sargassum spp. from Panjang Island and their antibacterial activities. Procedia Environ Sci. 2015;23:240-6. doi: 10.1016/j.proenv.2015.01.036.
  • 32. Zubair M, Rizwan K, Rasool N, Afshan N, Shahid M, Ahmed VU. Antimicrobial potential of various extract and fractions of leaves of Solanum nigrum. Int J Phytomedicine. 2011;3(1):63-7. doi: 10.7324/JAPS.2013.3420.
  • 33. Bakht J, Ali H, Khan MA, Khan A, Saeed M, Shafi M, et al. Antimicrobial activities of different solvents extracted samples of Linum usitatissimum by disc diffusion method. Africa J Biotechnol. 2011;10(85):19825-35.
  • 34. Kubo I, Fujita K, Kubo A, Nihei K, Ogura T. Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J Agric Food Chem. 2004;52(11):3329-32. doi: 10.1021/jf0354186. [PubMed: 15161192].
  • 35. Patra JK, Das G, Baek KH. Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and Salmonella Typhimurium. Bot Stud. 2015;56(1):13. doi: 10.1186/s40529-015-0093-7. [PubMed: 28510822]. [PubMed Central: PMC5432928].
  • 36. Yu SJ, Chang YL, Chen YL. Calcineurin signaling: Lessons from Candida species. FEMS Yeast Res. 2015;15(4):fov016. doi: 10.1093/femsyr/fov016. [PubMed: 25878052].
  • 37. Colombo AL, Nucci M, Park BJ, Nouer SA, Arthington-Skaggs B, da Matta DA, et al. Epidemiology of candidemia in Brazil: A nationwide sentinel surveillance of candidemia in eleven medical centers. J Clin Microbiol. 2006;44(8):2816-23. doi: 10.1128/JCM.00773-06. [PubMed: 16891497]. [PubMed Central: PMC1594610].
  • 38. Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. J Clin Microbiol. 2007;45(11):3522-8. doi: 10.1128/JCM.00403-07. [PubMed: 17913927]. [PubMed Central: PMC2168477].
  • 39. Merseguel KB, Nishikaku AS, Rodrigues AM, Padovan AC, e Ferreira RC, de Azevedo Melo AS, et al. Genetic diversity of medically important and emerging Candida species causing invasive infection. BMC Infect Dis. 2015;15:57. doi: 10.1186/s12879-015-0793-3. [PubMed: 25887032]. [PubMed Central: PMC4339437].
  • 40. Rukayadi Y, Lee K, Lee MS, Yong D, Hwang JK. Synergistic anticandidal activity of xanthorrhizol in combination with ketoconazole or amphotericin B. FEMS Yeast Res. 2009;9(8):1302-11. doi: 10.1111/j.1567-1364.2009.00548.x. [PubMed: 19663917].
  • 41. Sanguinetti M, Posteraro B, Lass-Florl C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses. 2015;58 Suppl 2:2-13. doi: 10.1111/myc.12330. [PubMed: 26033251].
  • 42. Won KJ, Lin HY, Jung S, Cho SM, Shin HC, Bae YM, et al. Antifungal miconazole induces cardiotoxicity via inhibition of APE/Ref-1-related pathway in rat neonatal cardiomyocytes. Toxicol Sci. 2012;126(2):298-305. doi: 10.1093/toxsci/kfr347. [PubMed: 22262564].
  • 43. Owen NL, Hundley N. Endophytes--the chemical synthesizers inside plants. Sci Prog. 2004;87(Pt 2):79-99. doi: 10.3184/003685004783238553. [PubMed: 15782772].
  • 44. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS One. 2013;8(8). e72520. doi: 10.1371/journal.pone.0072520. [PubMed: 23977310]. [PubMed Central: PMC3745589].
  • 45. Souza A, Cruz JC, Sousa NR, Procopio AR, Silva GF. Endophytic bacteria from banana cultivars and their antifungal activity. Genet Mol Res. 2014;13(4):8661-70. doi: 10.4238/2014.October.27.6. [PubMed: 25366756].
  • 46. Tan RX, Zou WX. Endophytes: A rich source of functional metabolites. Nat Prod Rep. 2001;18(4):448-59. doi: 10.1039/b100918o. [PubMed: 11548053].
  • 47. El-Deeb B, Bazaid S, Gherbawy Y, Elhariry H. Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits. J Plant Interact. 2012;7(3):248-53. doi: 10.1080/17429145.2011.637161.
  • 48. Wang F, Ma H, Hu Z, Jiang J, Zhu H, Cheng L, et al. Secondary metabolites from Colletotrichum capsici, an endophytic fungus derived from Siegesbeckia pubescens Makino. Nat Prod Res. 2017;31(16):1849-54. doi: 10.1080/14786419.2016.1261346. [PubMed: 27892688].
  • 49. Das G, Park S, Baek KH. Diversity of endophytic bacteria in a fern species dryopteris uniformis (makino) makino and evaluation of their antibacterial potential against five foodborne pathogenic bacteria. Foodborne Pathog Dis. 2017;14(5):260-8. doi: 10.1089/fpd.2016.2243. [PubMed: 28418717].
  • 50. Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67(4):491-502. doi: 10.1128/MMBR.67.4.491-502.2003. [PubMed: 14665674]. [PubMed Central: PMC309047].
  • 51. Li WC, Zhou J, Guo SY, Guo LD. Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers. 2007;25:69-80.
  • 52. Raviraja NS, Maria GL, Sridhar KR. Antimicrobial evaluation of endophytic fungi inhabiting medicinal plants of the Western Ghats of India. Eng Life Sci. 2006;6(5):515-20. doi: 10.1002/elsc.200620145.
  • 53. Tayung K, Jha DK. Antimicrobial evaluation of some fungal endophytes isolated from the bark of Himalayan yew. World J Agric Sci. 2006;2(4):489-94.
  • 54. Salehi B, Kumar NVA, Sener B, Sharifi-Rad M, Kilic M, Mahady GB, et al. Medicinal plants used in the treatment of human immunodeficiency virus. Int J Mol Sci. 2018;19(5). doi: 10.3390/ijms19051459. [PubMed: 29757986]. [PubMed Central: PMC5983620].
  • 55. Yamashiro D, Yoshioka M, Ashiuchi M. Bacillus subtilis pgsE (Formerly ywtC) stimulates poly-gamma-glutamate production in the presence of zinc. Biotechnol Bioeng. 2011;108(1):226-30. doi: 10.1002/bit.22913. [PubMed: 20812257].
  • 56. Huang B, Qin P, Xu Z, Zhu R, Meng Y. Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(gamma-glutamic acid). Bioresour Technol. 2011;102(3):3595-8. doi: 10.1016/j.biortech.2010.10.073. [PubMed: 21071211].
  • 57. Waites MJ, Morgan NL, Rockey JS, Higton G. Industrial microbiology: An introduction. John Wiley & Sons; 2009.
  • 58. Amin M, Rakhisi Z, Ahmady AZ. Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna J Clin Microbiol Infect. 2015;2(1). e23233. doi: 10.17795/ajcmi-23233.
  • 59. Li T, Shen P, Liu W, Liu C, Liang R, Yan N, et al. Major polyphenolics in pineapple peels and their antioxidant interactions. Int J Food Properties. 2014;17(8):1805-17. doi: 10.1080/10942912.2012.732168.
  • 60. Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol. 1994;60(6):2023-30. [PubMed: 8031096]. [PubMed Central: PMC201597].
  • 61. Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, et al. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol. 1995;78(2):97-108. [PubMed: 7698955].
  • 62. Bodhankar S, Grover M, Hemanth S, Reddy G, Rasul S, Yadav SK, et al. Maize seed endophytic bacteria: dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech. 2017;7(4):232. doi: 10.1007/s13205-017-0860-0. [PubMed: 28688037]. [PubMed Central: PMC5500752].
  • 63. Liu H, Shan W, Zhou Y, Yu X. Draft genome sequence of paenibacillus sp. XY044, a potential plant growth promoter isolated from a tea plant. Genome Announc. 2017;5(37). doi: 10.1128/genomeA.01016-17. [PubMed: 28912334]. [PubMed Central: PMC5597775].
  • 64. Zhao L, Xu Y, Lai XH, Shan C, Deng Z, Ji Y. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol. 2015;46(4):977-89. doi: 10.1590/S1517-838246420140024. [PubMed: 26691455]. [PubMed Central: PMC4704640].
  • 65. Tupinamba G, da Silva AJ, Alviano CS, Souto-Padron T, Seldin L, Alviano DS. Antimicrobial activity of Paenibacillus polymyxa SCE2 against some mycotoxin-producing fungi. J Appl Microbiol. 2008;105(4):1044-53. doi: 10.1111/j.1365-2672.2008.03844.x. [PubMed: 18498348].
  • 66. Koberl M, Ramadan EM, Adam M, Cardinale M, Hallmann J, Heuer H, et al. Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett. 2013;342(2):168-78. doi: 10.1111/1574-6968.12089. [PubMed: 23350560].
  • 67. Rybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G. Endophytes-assisted biocontrol: Novel insights in ecology and the mode of action of Paenibacillus. Plant Soil. 2015;405(1-2):125-40. doi: 10.1007/s11104-015-2526-1.
  • 68. Lim YW, Baik KS, Han SK, Kim SB, Bae KS. Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida. Int J Syst Evol Microbiol. 2003;53(Pt 5):1631-6. doi: 10.1099/ijs.0.02456-0. [PubMed: 13130061].
  • 69. Suarez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previato L, James EK, Venturi V. Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol. 2012;63(2):249-66. doi: 10.1007/s00248-011-9929-1. [PubMed: 21850446].
  • 70. Angus AA, Lee A, Lum MR, Shehayeb M, Hessabi R, Fujishige NA, et al. Nodulation and effective nitrogen fixation of Macroptilium atropurpureum (siratro) by Burkholderia tuberum, a nodulating and plant growth promoting beta-proteobacterium, are influenced by environmental factors. Plant Soil. 2013;369(1-2):543-62. doi: 10.1007/s11104-013-1590-7.
  • 71. Rangjaroen C, Sungthong R, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S. Untapped endophytic colonization and plant growth-promoting potential of the genus novosphingobium to optimize rice cultivation. Microbes Environ. 2017;32(1):84-7. doi: 10.1264/jsme2.ME16112. [PubMed: 28228608]. [PubMed Central: PMC5371080].
  • 72. Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G. Burkholderia fungorum DBT1: A promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiol Lett. 2011;319(1):11-8. doi: 10.1111/j.1574-6968.2011.02259.x. [PubMed: 21388438].
  • 73. Llado S, Xu Z, Sorensen SJ, Baldrian P. Draft genome sequence of burkholderia sordidicola S170, a potential plant growth promoter isolated from coniferous forest soil in the Czech Republic. Genome Announc. 2014;2(4). doi: 10.1128/genomeA.00810-14. [PubMed: 25125648]. [PubMed Central: PMC4132624].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments