Jundishapur Journal of Microbiology

Published by: Kowsar

Designing a Novel Multi-epitope DNA- Based Vaccine Against Tuberculosis: In Silico Approach

Jale Moradi 1 , Mina Tabrizi 2 , Maryam Izad 3 , Nader Mosavari 4 and Mohammad Mehdi Feizabadi 1 , 5 , *
Authors Information
1 Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
2 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
3 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
4 Department of Tuberculosis, Razi Vaccine and Serum Research Institute, Karaj, IR Iran
5 Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: March 2017, 10 (3); e67156
  • Published Online: February 6, 2017
  • Article Type: Research Article
  • Received: November 14, 2016
  • Revised: January 14, 2017
  • Accepted: January 25, 2017
  • DOI: 10.5812/jjm.43950

To Cite: Moradi J, Tabrizi M, Izad M, Mosavari N, Feizabadi M M. Designing a Novel Multi-epitope DNA- Based Vaccine Against Tuberculosis: In Silico Approach, Jundishapur J Microbiol. 2017 ; 10(3):e67156. doi: 10.5812/jjm.43950.

Copyright © 2017, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
  • 1. WHO . Tuberculosis Fact Sheet 2015 [database on the Internet]. 2015. Available from: http://www.who.int/mediacentre/factsheets/fs104/en.
  • 2. Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995;346(8986):1339-45. doi: 10.1016/S0140-6736(95)92348-9. [PubMed: 7475776].
  • 3. Parrish NM, Dick JD, Bishai WR. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 1998;6(3):107-12. doi: 10.1016/S0966-842X(98)01216-5. [PubMed: 9582936].
  • 4. Andersen P. Vaccine strategies against latent tuberculosis infection. Trends Microbiol. 2007;15(1):7-13. doi: 10.1016/j.tim.2006.11.008. [PubMed: 17141504].
  • 5. Boon C, Dick T. How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later. Future Microbiol. 2012;7(4):513-8. doi: 10.2217/fmb.12.14. [PubMed: 22439727].
  • 6. Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med. 2003;198(5):705-13. doi: 10.1084/jem.20030205. [PubMed: 12953092].
  • 7. Lin MY, Ottenhoff TH. Host-pathogen interactions in latent Mycobacterium tuberculosis infection: identification of new targets for tuberculosis intervention. Endocr Metab Immune Disord Drug Targets. 2008;8(1):15-29. doi: 10.2174/187153008783928398. [PubMed: 18393920].
  • 8. Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol. 2009;27:393-422. doi: 10.1146/annurev.immunol.021908.132703. [PubMed: 19302046].
  • 9. Singh S, Saraav I, Sharma S. Immunogenic potential of latency associated antigens against Mycobacterium tuberculosis. Vaccine. 2014;32(6):712-6. doi: 10.1016/j.vaccine.2013.11.065. [PubMed: 24300592].
  • 10. Leyten EM, Lin MY, Franken KL, Friggen AH, Prins C, van Meijgaarden KE, et al. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect. 2006;8(8):2052-60. doi: 10.1016/j.micinf.2006.03.018. [PubMed: 16931093].
  • 11. Chauhan P, Jain R, Dey B, Tyagi AK. Adjunctive immunotherapy with alpha-crystallin based DNA vaccination reduces Tuberculosis chemotherapy period in chronically infected mice. Sci Rep. 2013;3:1821. doi: 10.1038/srep01821. [PubMed: 23660989].
  • 12. Dey B, Jain R, Gupta UD, Katoch VM, Ramanathan VD, Tyagi AK. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis. PLoS One. 2011;6(8). ee23360. doi: 10.1371/journal.pone.0023360. [PubMed: 21858087].
  • 13. Connor LM, Harvie MC, Rich FJ, Quinn KM, Brinkmann V, Le Gros G, et al. A key role for lung-resident memory lymphocytes in protective immune responses after BCG vaccination. Eur J Immunol. 2010;40(9):2482-92. doi: 10.1002/eji.200940279. [PubMed: 20602436].
  • 14. Commandeur S, Lin MY, van Meijgaarden KE, Friggen AH, Franken KL, Drijfhout JW, et al. Double- and monofunctional CD4(+) and CD8(+) T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals. Eur J Immunol. 2011;41(10):2925-36. doi: 10.1002/eji.201141602. [PubMed: 21728172].
  • 15. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313-26. doi: 10.1016/j.cell.2010.01.028. [PubMed: 20144757].
  • 16. Gannage M, Munz C. Autophagy in MHC class II presentation of endogenous antigens. Curr Top Microbiol Immunol. 2009;335:123-40. doi: 10.1007/978-3-642-00302-8_6. [PubMed: 19802563].
  • 17. Munz C. Antigen processing via autophagy--not only for MHC class II presentation anymore?. Curr Opin Immunol. 2010;22(1):89-93. doi: 10.1016/j.coi.2010.01.016. [PubMed: 20149615].
  • 18. Kutzler MA, Weiner DB. DNA vaccines: ready for prime time?. Nat Rev Genet. 2008;9(10):776-88. doi: 10.1038/nrg2432. [PubMed: 18781156].
  • 19. Iurescia S, Fioretti D, Fazio VM, Rinaldi M. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech's challenge. Biotechnol Adv. 2012;30(1):372-83. doi: 10.1016/j.biotechadv.2011.06.020. [PubMed: 21745560].
  • 20. Kao FF, Mahmuda S, Pinto R, Triccas JA, West NP, Britton WJ. The secreted lipoprotein, MPT83, of Mycobacterium tuberculosis is recognized during human tuberculosis and stimulates protective immunity in mice. PLoS One. 2012;7(5). ee34991. doi: 10.1371/journal.pone.0034991. [PubMed: 22567094].
  • 21. Kosmrlj A, Read EL, Qi Y, Allen TM, Altfeld M, Deeks SG, et al. Effects of thymic selection of the T-cell repertoire on HLA class I-associated control of HIV infection. Nature. 2010;465(7296):350-4. doi: 10.1038/nature08997. [PubMed: 20445539].
  • 22. Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991;252(5009):1162-4. doi: 10.1126/science.252.5009.1162. [PubMed: 2031185].
  • 23. McDonnell AV, Jiang T, Keating AE, Berger B. Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics. 2006;22(3):356-8. doi: 10.1093/bioinformatics/bti797. [PubMed: 16317077].
  • 24. Bornberg-Bauer E, Rivals E, Vingron M. Computational approaches to identify leucine zippers. Nucleic Acids Res. 1998;26(11):2740-6. doi: 10.1093/nar/26.11.2740. [PubMed: 9592163].
  • 25. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33(Web Server issue):W116-20. doi: 10.1093/nar/gki442. [PubMed: 15980438].
  • 26. Saha S, Raghava GP. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 2006;34(Web Server issue):W202-9. doi: 10.1093/nar/gkl343. [PubMed: 16844994].
  • 27. Wang J, Zhang D, Li J. PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection. BMC Syst Biol. 2013;7 Suppl 5:S9. doi: 10.1186/1752-0509-7-S5-S9. [PubMed: 24565053].
  • 28. Magnan CN, Zeller M, Kayala MA, Vigil A, Randall A, Felgner PL, et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics. 2010;26(23):2936-43. doi: 10.1093/bioinformatics/btq551. [PubMed: 20934990].
  • 29. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8:4. doi: 10.1186/1471-2105-8-4. [PubMed: 17207271].
  • 30. Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33(Web Server issue):W526-31. doi: 10.1093/nar/gki376. [PubMed: 15980527].
  • 31. Xu X, Zhao P, Chen SJ. Vfold: a web server for RNA structure and folding thermodynamics prediction. PLoS One. 2014;9(9). ee107504. doi: 10.1371/journal.pone.0107504. [PubMed: 25215508].
  • 32. Almeida RR, Rosa DS, Ribeiro SP, Santana VC, Kallas EG, Sidney J, et al. Broad and cross-clade CD4+ T-cell responses elicited by a DNA vaccine encoding highly conserved and promiscuous HIV-1 M-group consensus peptides. PLoS One. 2012;7(9). ee45267. doi: 10.1371/journal.pone.0045267. [PubMed: 23028895].
  • 33. Klein L, Munz C, Lunemann JD. Autophagy-mediated antigen processing in CD4(+) T cell tolerance and immunity. FEBS Lett. 2010;584(7):1405-10. doi: 10.1016/j.febslet.2010.01.008. [PubMed: 20074571].
  • 34. Frantz FG, Rosada RS, Peres-Buzalaf C, Perusso FR, Rodrigues V, Ramos SG, et al. Helminth coinfection does not affect therapeutic effect of a DNA vaccine in mice harboring tuberculosis. PLoS Negl Trop Dis. 2010;4(6). ee700. doi: 10.1371/journal.pntd.0000700. [PubMed: 20544012].
  • 35. Huygen K. The Immunodominant T-Cell Epitopes of the Mycolyl-Transferases of the Antigen 85 Complex of M. tuberculosis. Front Immunol. 2014;5:321. doi: 10.3389/fimmu.2014.00321. [PubMed: 25071781].
  • 36. He Y, Rappuoli R, De Groot AS, Chen RT. Emerging vaccine informatics. J Biomed Biotechnol. 2010;2010:218590. doi: 10.1155/2010/218590. [PubMed: 21772787].
  • 37. Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics. 2008;9 Suppl 12:S22. doi: 10.1186/1471-2105-9-S12-S22. [PubMed: 19091022].
  • 38. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405-14. doi: 10.1016/j.jbi.2014.11.003. [PubMed: 25464113].
  • 39. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131-45. doi: 10.1074/jbc.M702824200. [PubMed: 17580304].
  • 40. Noda NN, Ohsumi Y, Inagaki F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 2010;584(7):1379-85. doi: 10.1016/j.febslet.2010.01.018. [PubMed: 20083108].
  • 41. Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, Ohsumi Y, et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 2009;28(9):1341-50. doi: 10.1038/emboj.2009.80. [PubMed: 19322194].
  • 42. Satoo K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. Crystallization and preliminary crystallographic analysis of human Atg4B-LC3 complex. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63(Pt 2):99-102. doi: 10.1107/S1744309106056429. [PubMed: 17277449].
  • 43. Clark RS, Bayir H, Jenkins LW. Posttranslational protein modifications. Crit Care Med. 2005;33(12 Suppl):S407-9. doi: 10.1097/01.CCM.0000191712.96336.51. [PubMed: 16340406].
  • 44. Butikofer P, Malherbe T, Boschung M, Roditi I. GPI-anchored proteins: now you see 'em, now you don't. FASEB J. 2001;15(2):545-8. doi: 10.1096/fj.00-0415hyp. [PubMed: 11156970].
  • 45. Beck HC, Nielsen EC, Matthiesen R, Jensen LH, Sehested M, Finn P, et al. Quantitative proteomic analysis of post-translational modifications of human histones. Mol Cell Proteomics. 2006;5(7):1314-25. doi: 10.1074/mcp.M600007-MCP200. [PubMed: 16627869].
  • 46. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3):635-48. doi: 10.1016/j.cell.2006.09.026. [PubMed: 17081983].
  • 47. Colecchia D, Strambi A, Sanzone S, Iavarone C, Rossi M, Dall'Armi C, et al. MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy. 2012;8(12):1724-40. doi: 10.4161/auto.21857. [PubMed: 22948227].
  • 48. Dougan DA, Micevski D, Truscott KN. The N-end rule pathway: from recognition by N-recognins, to destruction by AAA+proteases. Biochim Biophys Acta. 2012;1823(1):83-91. doi: 10.1016/j.bbamcr.2011.07.002. [PubMed: 21781991].
  • 49. Dowling W, Thompson E, Badger C, Mellquist JL, Garrison AR, Smith JM, et al. Influences of glycosylation on antigenicity, immunogenicity, and protective efficacy of ebola virus GP DNA vaccines. J Virol. 2007;81(4):1821-37. doi: 10.1128/JVI.02098-06. [PubMed: 17151111].
  • 50. Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975;67(3):835-51. doi: 10.1083/jcb.67.3.835. [PubMed: 811671].
  • 51. Harding CV, Song R, Griffin J, France J, Wick MJ, Pfeifer JD, et al. Processing of bacterial antigens for presentation to class I and II MHC-restricted T lymphocytes. Infect Agents Dis. 1995;4(1):1-12. [PubMed: 7728352].
  • 52. Uchijima M, Yoshida A, Nagata T, Koide Y. Optimization of codon usage of plasmid DNA vaccine is required for the effective MHC class I-restricted T cell responses against an intracellular bacterium. J Immunol. 1998;161(10):5594-9. [PubMed: 9820537].
  • 53. Guhaniyogi J, Brewer G. Regulation of mRNA stability in mammalian cells. Gene. 2001;265(1-2):11-23. doi: 10.1016/S0378-1119(01)00350-X. [PubMed: 11255003].
  • 54. Gonzalez de Valdivia EI, Isaksson LA. Abortive translation caused by peptidyl-tRNA drop-off at NGG codons in the early coding region of mRNA. FEBS J. 2005;272(20):5306-16. doi: 10.1111/j.1742-4658.2005.04926.x. [PubMed: 16218960].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments