Jundishapur Journal of Microbiology

Published by: Kowsar

Evaluation of Immune Responses to a DNA Vaccine Encoding Ag85a-Cfp10 Antigen of Mycobacterium tuberculosis in an Animal Model

Hadi Peeridogaheh 1 , Roghayeh Teimourpour 1 , Bagher Moradi 2 , Mehdi Yousefipour 3 , Aida Gholoobi 4 , Akram Baghani 5 and Zahra Meshkat 6 , 7 , *
Authors Information
1 Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
2 Esfarayen Faculty of Medical Science, Esfarayen, Iran
3 Department of Infectious Disease, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
5 Department of Pathobiology, School of Public Health, Division of Microbiology, Tehran University of Medical Sciences, Tehran, Iran
6 Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
7 Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Article information
  • Jundishapur Journal of Microbiology: January 31, 2019, 12 (1); e65689
  • Published Online: December 16, 2018
  • Article Type: Research Article
  • Received: December 30, 2016
  • Revised: July 29, 2018
  • Accepted: August 1, 2018
  • DOI: 10.5812/jjm.65689

To Cite: Peeridogaheh H, Teimourpour R, Moradi B, Yousefipour M, Gholoobi A, et al. Evaluation of Immune Responses to a DNA Vaccine Encoding Ag85a-Cfp10 Antigen of Mycobacterium tuberculosis in an Animal Model, Jundishapur J Microbiol. 2019 ; 12(1):e65689. doi: 10.5812/jjm.65689.

Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Mandell D, Bennett JE. Principles and practice of infectious diseases. 7th ed. Churchill Livingstone; 2009.
  • 2. Collier L, Ballows A, Sussman M. Topley and Wilson's microbiology and microbial infections. 5. 10th ed. Hodder Arnold: London; 2005.
  • 3. Hesseling AC, Marais BJ, Gie RP, Schaaf HS, Fine PE, Godfrey-Faussett P, et al. The risk of disseminated bacille calmette-guerin (BCG) disease in HIV-infected children. Vaccine. 2007;25(1):14-8. doi: 10.1016/j.vaccine.2006.07.020. [PubMed: 16959383].
  • 4. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, et al. Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials. Clin Infect Dis. 2014;58(4):470-80. doi: 10.1093/cid/cit790. [PubMed: 24336911].
  • 5. Roy A, Eisenhut M, Harris RJ, Rodrigues LC, Sridhar S, Habermann S, et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: Systematic review and meta-analysis. BMJ. 2014;349:g4643. doi: 10.1136/bmj.g4643. [PubMed: 25097193]. [PubMed Central: PMC4122754].
  • 6. Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: A meta-analysis and assessment of cost-effectiveness. Lancet. 2006;367(9517):1173-80. doi: 10.1016/S0140-6736(06)68507-3. [PubMed: 16616560].
  • 7. Brandt L, Feino Cunha J, Weinreich Olsen A, Chilima B, Hirsch P, Appelberg R, et al. Failure of the Mycobacterium bovis BCG vaccine: Some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect Immun. 2002;70(2):672-8. doi: 10.1128/IAI.70.2.672-678.2002. [PubMed: 11796598]. [PubMed Central: PMC127715].
  • 8. Liu J, Tran V, Leung AS, Alexander DC, Zhu B. BCG vaccines: Their mechanisms of attenuation and impact on safety and protective efficacy. Hum Vaccin. 2009;5(2):70-8. doi: 10.4161/hv.5.2.7210. [PubMed: 19164935].
  • 9. Yuk JM, Jo EK. Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis. Clin Exp Vaccine Res. 2014;3(2):155-67. doi: 10.7774/cevr.2014.3.2.155. [PubMed: 25003089]. [PubMed Central: PMC4083068].
  • 10. Druszczynska M, Kowalewicz-Kulbat M, Fol M, Wlodarczyk M, Rudnicka W. Latent M. tuberculosis infection--pathogenesis, diagnosis, treatment and prevention strategies. Pol J Microbiol. 2012;61(1):3-10. [PubMed: 22708341].
  • 11. Orme IM. Current progress in tuberculosis vaccine development. Vaccine. 2005;23(17-18):2105-8. doi: 10.1016/j.vaccine.2005.01.062. [PubMed: 15755579].
  • 12. Armitige LY, Jagannath C, Wanger AR, Norris SJ. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: Effect on growth in culture and in macrophages. Infect Immun. 2000;68(2):767-78. doi: 10.1128/IAI.68.2.767-778.2000. [PubMed: 10639445]. [PubMed Central: PMC97204].
  • 13. Lozes E, Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, et al. Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine. 1997;15(8):830-3. doi: 10.1016/S0264-410X(96)00274-5. [PubMed: 9234526].
  • 14. Stylianou E, Griffiths KL, Poyntz HC, Harrington-Kandt R, Dicks MD, Stockdale L, et al. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine. 2015;33(48):6800-8. doi: 10.1016/j.vaccine.2015.10.017. [PubMed: 26478198]. [PubMed Central: PMC4678294].
  • 15. Horwitz MA, Lee BW, Dillon BJ, Harth G. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1995;92(5):1530-4. doi: 10.1073/pnas.92.5.1530. [PubMed: 7878014]. [PubMed Central: PMC42553].
  • 16. Seki M, Honda I, Fujita I, Yano I, Yamamoto S, Koyama A. Whole genome sequence analysis of Mycobacterium bovis bacillus Calmette-Guerin (BCG) Tokyo 172: A comparative study of BCG vaccine substrains. Vaccine. 2009;27(11):1710-6. doi: 10.1016/j.vaccine.2009.01.034. [PubMed: 19200449].
  • 17. Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol. 2004;51(2):359-70. doi: 10.1046/j.1365-2958.2003.03844.x. [PubMed: 14756778]. [PubMed Central: PMC1458497].
  • 18. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol. 2002;46(3):709-17. doi: 10.1046/j.1365-2958.2002.03237.x. [PubMed: 12410828].
  • 19. Ganguly N, Siddiqui I, Sharma P. Role of M. tuberculosis RD-1 region encoded secretory proteins in protective response and virulence. Tuberculosis (Edinb). 2008;88(6):510-7. doi: 10.1016/j.tube.2008.05.002. [PubMed: 18640874].
  • 20. Marinova D, Gonzalo-Asensio J, Aguilo N, Martin C. Recent developments in tuberculosis vaccines. Expert Rev Vaccines. 2013;12(12):1431-48. doi: 10.1586/14760584.2013.856765. [PubMed: 24195481].
  • 21. Baghani A, Yousefi M, Safdari H, Teimourpour R, Gholoobi A, Meshkat Z. Designing and construction a DNA vaccine encoding the fusion fragment of cfp10 and Ag85A immunodominant genes of Mycobacterium tuberculosis. Arch Med Lab Sci. 2017;2(4). doi: 10.22037/amls.v2i4.17185.
  • 22. Silverman J, Suckow MA, Murthy S. The IACUC handbook. CRC Press; 2014.
  • 23. Baghani A, Youssefi M, Safdari H, Teimourpour R, Meshkat Z. Designing and construction Pcdna3.1 vector encoding Cfp10 gene of mycobacterium tuberculosis. Jundishapur J Microbiol. 2015;8(10). e23560. doi: 10.5812/jjm.23560. [PubMed: 26587210]. [PubMed Central: PMC4644269].
  • 24. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. 2nd ed. Cold Spring Harbor; 2001.
  • 25. Meshkat Z, Soleimanjahi H, Mahmoudi M, Hassan ZM, Mirshahabi H, Meshkat M, et al. CTL responses to a DNA vaccine encoding E7 gene of human papillomavirus type 16 from an Iranian isolate. Iran J Immunol. 2008;5(2):82-91. [PubMed: 18523353].
  • 26. Teimourpour R, Peeridogaheh H, Teimourpour A, Arzanlou M, Meshkat Z. A study on the immune response induced by a DNA vaccine encoding Mtb32C-HBHA antigen of Mycobacterium tuberculosis. Iran J Basic Med Sci. 2017;20(10):1119-24. doi: 10.22038/IJBMS.2017.9445. [PubMed: 29147487]. [PubMed Central: PMC5673696].
  • 27. Javan MR, Jalali Nezhad A, Shahraki S, Safa A, Aali H, Kiani Z. Cross-talk between the immune system and tuberculosis pathogenesis; a review with emphasis on the immune based treatment. Int J Basic Sci Med. 2016;1(2):40-7. doi: 10.15171/ijbsm.2016.10.
  • 28. Sia JK, Georgieva M, Rengarajan J. Innate immune defenses in human tuberculosis: An overview of the interactions between mycobacterium tuberculosis and innate immune cells. J Immunol Res. 2015;2015:747543. doi: 10.1155/2015/747543. [PubMed: 26258152]. [PubMed Central: PMC4516846].
  • 29. Schluger NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med. 1998;157(3 Pt 1):679-91. doi: 10.1164/ajrccm.157.3.9708002. [PubMed: 9517576].
  • 30. Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol. 2009;27:393-422. doi: 10.1146/annurev.immunol.021908.132703. [PubMed: 19302046]. [PubMed Central: PMC4298253].
  • 31. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178(6):2249-54. doi: 10.1084/jem.178.6.2249. [PubMed: 7504064]. [PubMed Central: PMC2191274].
  • 32. Cavalcanti YV, Brelaz MC, Neves JK, Ferraz JC, Pereira VR. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm Med. 2012;2012:745483. doi: 10.1155/2012/745483. [PubMed: 23251798]. [PubMed Central: PMC3515941].
  • 33. Bibert S, Bratschi MW, Aboagye SY, Collinet E, Scherr N, Yeboah-Manu D, et al. Susceptibility to Mycobacterium ulcerans disease (Buruli ulcer) is associated with IFNG and iNOS gene polymorphisms. Front Microbiol. 2017;8:1903. doi: 10.3389/fmicb.2017.01903. [PubMed: 29046669]. [PubMed Central: PMC5632961].
  • 34. Cooper AM, Solache A, Khader SA. Interleukin-12 and tuberculosis: An old story revisited. Curr Opin Immunol. 2007;19(4):441-7. doi: 10.1016/j.coi.2007.07.004. [PubMed: 17702558]. [PubMed Central: PMC2075090].
  • 35. Vignali DA, Kuchroo VK. IL-12 family cytokines: Immunological playmakers. Nat Immunol. 2012;13(8):722-8. doi: 10.1038/ni.2366. [PubMed: 22814351]. [PubMed Central: PMC4158817].
  • 36. Rook GA, Hernandez-Pando R, Dheda K, Teng Seah G. IL-4 in tuberculosis: Implications for vaccine design. Trends Immunol. 2004;25(9):483-8. doi: 10.1016/j.it.2004.06.005. [PubMed: 15324741].
  • 37. Buccheri S, Reljic R, Caccamo N, Ivanyi J, Singh M, Salerno A, et al. IL-4 depletion enhances host resistance and passive IgA protection against tuberculosis infection in BALB/c mice. Eur J Immunol. 2007;37(3):729-37. doi: 10.1002/eji.200636764. [PubMed: 17304630].
  • 38. Hernandez-Pando R, Aguilar D, Hernandez ML, Orozco H, Rook G. Pulmonary tuberculosis in BALB/c mice with non-functional IL-4 genes: Changes in the inflammatory effects of TNF-alpha and in the regulation of fibrosis. Eur J Immunol. 2004;34(1):174-83. doi: 10.1002/eji.200324253. [PubMed: 14971043].
  • 39. Redford PS, Murray PJ, O'Garra A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol. 2011;4(3):261-70. doi: 10.1038/mi.2011.7. [PubMed: 21451501].
  • 40. Abdalla AE, Lambert N, Duan X, Xie J. Interleukin-10 family and tuberculosis: An old story renewed. Int J Biol Sci. 2016;12(6):710-7. doi: 10.7150/ijbs.13881. [PubMed: 27194948]. [PubMed Central: PMC4870714].
  • 41. Beamer GL, Flaherty DK, Assogba BD, Stromberg P, Gonzalez-Juarrero M, de Waal Malefyt R, et al. Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice. J Immunol. 2008;181(8):5545-50. [PubMed: 18832712]. [PubMed Central: PMC2728584].
  • 42. Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, Deck RR, et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat Med. 1996;2(8):893-8. doi: 10.1038/nm0896-893. [PubMed: 8705859].
  • 43. Baldwin SL, D'Souza CD, Orme IM, Liu MA, Huygen K, Denis O, et al. Immunogenicity and protective efficacy of DNA vaccines encoding secreted and non-secreted forms of Mycobacterium tuberculosis Ag85A. Tuber Lung Dis. 1999;79(4):251-9. doi: 10.1054/tuld.1998.0196. [PubMed: 10692994].
  • 44. Kashangura R, Sena ES, Young T, Garner P. Effects of MVA85A vaccine on tuberculosis challenge in animals: Systematic review. Int J Epidemiol. 2015;44(6):1970-81. doi: 10.1093/ije/dyv142. [PubMed: 26351306]. [PubMed Central: PMC4689998].
  • 45. Guzman E, Cubillos-Zapata C, Cottingham MG, Gilbert SC, Prentice H, Charleston B, et al. Modified vaccinia virus Ankara-based vaccine vectors induce apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic caspase pathways, preventing efficient antigen presentation. J Virol. 2012;86(10):5452-66. doi: 10.1128/JVI.00264-12. [PubMed: 22419811]. [PubMed Central: PMC3347273].
  • 46. Nicol MP, Grobler LA. MVA-85A, a novel candidate booster vaccine for the prevention of tuberculosis in children and adults. Curr Opin Mol Ther. 2010;12(1):124-34. [PubMed: 20140824].
  • 47. McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, Cox JS, et al. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog. 2007;3(8). e105. doi: 10.1371/journal.ppat.0030105. [PubMed: 17676952]. [PubMed Central: PMC1937011].
  • 48. Tan T, Lee WL, Alexander DC, Grinstein S, Liu J. The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cell Microbiol. 2006;8(9):1417-29. doi: 10.1111/j.1462-5822.2006.00721.x. [PubMed: 16922861].
  • 49. Guo S, Xue R, Li Y, Wang SM, Ren L, Xu JJ. The CFP10/ESAT6 complex of Mycobacterium tuberculosis may function as a regulator of macrophage cell death at different stages of tuberculosis infection. Med Hypotheses. 2012;78(3):389-92. doi: 10.1016/j.mehy.2011.11.022. [PubMed: 22192908].
  • 50. Wu Y, Woodworth JS, Shin DS, Morris S, Behar SM. Vaccine-elicited 10-kilodalton culture filtrate protein-specific CD8+ T cells are sufficient to mediate protection against Mycobacterium tuberculosis infection. Infect Immun. 2008;76(5):2249-55. doi: 10.1128/IAI.00024-08. [PubMed: 18332205]. [PubMed Central: PMC2346695].
  • 51. Li L, Petrovsky N. Molecular adjuvants for DNA vaccines. Curr Issues Mol Biol. 2017;22:17-40. doi: 10.21775/cimb.022.017. [PubMed: 27648581].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments