Jundishapur Journal of Microbiology

Published by: Kowsar

Gene Profile Expression Related to Type I Interferons in HT-29 Cells Exposed to Cryptosporidium parvum

Seyede Manizhe Heidarnejadi 1 , 2 , 3 , Abdollah Rafiei 1 , 2 , * , Manoochehr Makvandi 1 , 4 , Majid Pirestani 5 , Jasem Saki 6 and Ataallah Ghadiri 7
Authors Information
1 Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
2 Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
3 Shoshtar Faculty of Medical Sciences, Shoshtar, IR Iran
4 Virology Department, Infectious and Tropical Disease Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
5 Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
6 Department of Medical Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
7 Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
Article information
  • Jundishapur Journal of Microbiology: July 2018, 11 (7); e63071
  • Published Online: July 2, 2018
  • Article Type: Research Article
  • Received: October 27, 2017
  • Revised: June 13, 2018
  • Accepted: June 17, 2018
  • DOI: 10.5812/jjm.63071

To Cite: Heidarnejadi S M, Rafiei A, Makvandi M, Pirestani M, Saki J, et al. Gene Profile Expression Related to Type I Interferons in HT-29 Cells Exposed to Cryptosporidium parvum, Jundishapur J Microbiol. 2018 ; 11(7):e63071. doi: 10.5812/jjm.63071.

Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
6. Conclusions
  • 1. Farthing MJG. Clinical Aspects of Human Cryptosporidiosis. In: Petry F, editor. Cryptosporidiosis and Microsporidiosis. 6. Karger; 2000. p. 50-74. doi: 10.1159/000060368.
  • 2. Zhou R, Gong AY, Eischeid AN, Chen XM. miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection. PLoS Pathog. 2012;8(5). e1002702. doi: 10.1371/journal.ppat.1002702. [PubMed: 22615562]. [PubMed Central: PMC3355088].
  • 3. Barakat FM, McDonald V, Foster GR, Tovey MG, Korbel DS. Cryptosporidium parvum infection rapidly induces a protective innate immune response involving type I interferon. J Infect Dis. 2009;200(10):1548-55. doi: 10.1086/644601. [PubMed: 19821721].
  • 4. Castellanos-Gonzalez A, Cabada MM, Nichols J, Gomez G, White ACJ. Human primary intestinal epithelial cells as an improved in vitro model for Cryptosporidium parvum infection. Infect Immun. 2013;81(6):1996-2001. doi: 10.1128/IAI.01131-12. [PubMed: 23509153]. [PubMed Central: PMC3676030].
  • 5. Karanis P, Aldeyarbi HM. Evolution of Cryptosporidium in vitro culture. Int J Parasitol. 2011;41(12):1231-42. doi: 10.1016/j.ijpara.2011.08.001. [PubMed: 21889507].
  • 6. Park WD, Stegall MD. A meta-analysis of kidney microarray datasets: investigation of cytokine gene detection and correlation with rt-PCR and detection thresholds. BMC Genomics. 2007;8:88. doi: 10.1186/1471-2164-8-88. [PubMed: 17397532]. [PubMed Central: PMC1852103].
  • 7. Meloni BP, Thompson RC. Simplified methods for obtaining purified oocysts from mice and for growing Cryptosporidium parvum in vitro. J Parasitol. 1996;82(5):757-62. [PubMed: 8885885].
  • 8. Pantenburg B, Castellanos-Gonzalez A, Dann SM, Connelly RL, Lewis DE, Ward HD, et al. Human CD8(+) T cells clear Cryptosporidium parvum from infected intestinal epithelial cells. Am J Trop Med Hyg. 2010;82(4):600-7. doi: 10.4269/ajtmh.2010.09-0590. [PubMed: 20348507]. [PubMed Central: PMC2844566].
  • 9. Haller O, Arnheiter H, Lindenmann J, Gresser I. Host gene influences sensitivity to interferon action selectively for influenza virus. Nature. 1980;283(5748):660-2. [PubMed: 7354853].
  • 10. Haller O, Frese M, Kochs G. Mx proteins: mediators of innate resistance to RNA viruses. Rev Sci Tech. 1998;17(1):220-30. [PubMed: 9638812].
  • 11. Shtrichman R, Heithoff DM, Mahan MJ, Samuel CE. Tissue selectivity of interferon-stimulated gene expression in mice infected with Dam(+) versus Dam(-) Salmonella enterica serovar Typhimurium strains. Infect Immun. 2002;70(10):5579-88. [PubMed: 12228285]. [PubMed Central: PMC128359].
  • 12. Nagy N, Maeda A, Bandobashi K, Kis LL, Nishikawa J, Trivedi P, et al. SH2D1A expression in Burkitt lymphoma cells is restricted to EBV positive group I lines and is downregulated in parallel with immunoblastic transformation. Int J Cancer. 2002;100(4):433-40. doi: 10.1002/ijc.10498. [PubMed: 12115526].
  • 13. Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, et al. Correlation of mutations of the SH2D1A gene and epstein-barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96(9):3118-25. [PubMed: 11049992].
  • 14. Chuang HC, Lay JD, Hsieh WC, Wang HC, Chang Y, Chuang SE, et al. Epstein-Barr virus LMP1 inhibits the expression of SAP gene and upregulates Th1 cytokines in the pathogenesis of hemophagocytic syndrome. Blood. 2005;106(9):3090-6. doi: 10.1182/blood-2005-04-1406. [PubMed: 16002423].
  • 15. Wyatt CR, Barrett WJ, Brackett EJ, Schaefer DA, Riggs MW. Association of IL-10 expression by mucosal lymphocytes with increased expression of Cryptosporidium parvum epitopes in infected epithelium. J Parasitol. 2002;88(2):281-6. doi: 10.1645/0022-3395(2002)088[0281:AOIEBM]2.0.CO;2. [PubMed: 12053998].
  • 16. Clark RT, Nance JP, Noor S, Wilson EH. T-cell production of matrix metalloproteinases and inhibition of parasite clearance by TIMP-1 during chronic Toxoplasma infection in the brain. ASN Neuro. 2011;3(1). e00049. doi: 10.1042/AN20100027. [PubMed: 21434872]. [PubMed Central: PMC3024837].
  • 17. Nasser JA, Falavigna A, Ferraz F, Duigou G, Bruce J. Transcription analysis of TIMP-1 and NM23-H1 genes in glioma cell invasion. Arq Neuropsiquiatr. 2006;64(3B):774-80. [PubMed: 17057884].
  • 18. Babon JJ, Lucet IS, Murphy JM, Nicola NA, Varghese LN. The molecular regulation of Janus kinase (JAK) activation. Biochem J. 2014;462(1):1-13. doi: 10.1042/BJ20140712. [PubMed: 25057888]. [PubMed Central: PMC4112375].
  • 19. Ganguli P, Chowdhury S, Chowdhury S, Sarkar RR. Identification of Th1/Th2 regulatory switch to promote healing response during leishmaniasis: a computational approach. EURASIP J Bioinform Syst Biol. 2015;2015(1):13. doi: 10.1186/s13637-015-0032-7. [PubMed: 26660865]. [PubMed Central: PMC4666900].
  • 20. Favila MA, Geraci NS, Zeng E, Harker B, Condon D, Cotton RN, et al. Human dendritic cells exhibit a pronounced type I IFN signature following Leishmania major infection that is required for IL-12 induction. J Immunol. 2014;192(12):5863-72. doi: 10.4049/jimmunol.1203230. [PubMed: 24808365]. [PubMed Central: PMC4052223].
  • 21. McDowell MA, Marovich M, Lira R, Braun M, Sacks D. Leishmania priming of human dendritic cells for CD40 ligand-induced interleukin-12p70 secretion is strain and species dependent. Infect Immun. 2002;70(8):3994-4001. [PubMed: 12117904]. [PubMed Central: PMC128119].
  • 22. Lohoff M, Duncan GS, Ferrick D, Mittrucker HW, Bischof S, Prechtl S, et al. Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J Exp Med. 2000;192(3):325-36. [PubMed: 10934221]. [PubMed Central: PMC2193225].
  • 23. Hammami A, Charpentier T, Smans M, Stager S. IRF-5-Mediated Inflammation Limits CD8+ T Cell Expansion by Inducing HIF-1alpha and Impairing Dendritic Cell Functions during Leishmania Infection. PLoS Pathog. 2015;11(6). e1004938. doi: 10.1371/journal.ppat.1004938. [PubMed: 26046638]. [PubMed Central: PMC4457842].
  • 24. Joshi T, Rodriguez S, Perovic V, Cockburn IA, Stager S. B7-H1 blockade increases survival of dysfunctional CD8(+) T cells and confers protection against Leishmania donovani infections. PLoS Pathog. 2009;5(5). e1000431. doi: 10.1371/journal.ppat.1000431. [PubMed: 19436710]. [PubMed Central: PMC2674929].
  • 25. Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, et al. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem. 2005;280(17):17005-12. doi: 10.1074/jbc.M412584200. [PubMed: 15695821].
  • 26. Dann SM, Wang HC, Gambarin KJ, Actor JK, Robinson P, Lewis DE, et al. Interleukin-15 activates human natural killer cells to clear the intestinal protozoan cryptosporidium. J Infect Dis. 2005;192(7):1294-302. doi: 10.1086/444393. [PubMed: 16136475].
  • 27. Budagian V, Bulanova E, Paus R, Bulfone-Paus S. IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 2006;17(4):259-80. doi: 10.1016/j.cytogfr.2006.05.001. [PubMed: 16815076].
  • 28. Kennedy MK, Park LPR. Interleukin-15. Thomson; 1998.
  • 29. Imaizumi T, Hatakeyama M, Yamashita K, Yoshida H, Ishikawa A, Taima K, et al. Interferon-gamma induces retinoic acid-inducible gene-I in endothelial cells. Endothelium. 2004;11(3-4):169-73. doi: 10.1080/10623320490512156. [PubMed: 15370293].
  • 30. Alvarez Rojas CA, Ansell BR, Hall RS, Gasser RB, Young ND, Jex AR, et al. Transcriptional analysis identifies key genes involved in metabolism, fibrosis/tissue repair and the immune response against Fasciola hepatica in sheep liver. Parasit Vectors. 2015;8:124. doi: 10.1186/s13071-015-0715-7. [PubMed: 25885344]. [PubMed Central: PMC4382932].
  • 31. Carneiro MW, Fukutani KF, Andrade BB, Curvelo RP, Cristal JR, Carvalho AM, et al. Gene Expression Profile of High IFN-gamma Producers Stimulated with Leishmania braziliensis Identifies Genes Associated with Cutaneous Leishmaniasis. PLoS Negl Trop Dis. 2016;10(11). e0005116. doi: 10.1371/journal.pntd.0005116. [PubMed: 27870860]. [PubMed Central: PMC5117592].
  • 32. Wang HC, Dann SM, Okhuysen PC, Lewis DE, Chappell CL, Adler DG, et al. High levels of CXCL10 are produced by intestinal epithelial cells in AIDS patients with active cryptosporidiosis but not after reconstitution of immunity. Infect Immun. 2007;75(1):481-7. doi: 10.1128/IAI.01237-06. [PubMed: 17043107]. [PubMed Central: PMC1828373].
  • 33. Wang J, Yang B, Hu Y, Zheng Y, Zhou H, Wang Y, et al. Negative regulation of Nmi on virus-triggered type I IFN production by targeting IRF7. J Immunol. 2013;191(6):3393-9. doi: 10.4049/jimmunol.1300740. [PubMed: 23956435].
  • 34. Zhu M, John S, Berg M, Leonard WJ. Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell. 1999;96(1):121-30. [PubMed: 9989503].
  • 35. Hu X, Yang W, Liu R, Geng Y, Qiao W, Tan J. N-Myc interactor inhibits prototype foamy virus by sequestering viral Tas protein in the cytoplasm. J Virol. 2014;88(12):7036-44. doi: 10.1128/JVI.00799-14. [PubMed: 24719420]. [PubMed Central: PMC4054356].
  • 36. Wang J, Wang Y, Liu J, Ding L, Zhang Q, Li X, et al. A critical role of N-myc and STAT interactor (Nmi) in foot-and-mouth disease virus (FMDV) 2C-induced apoptosis. Virus Res. 2012;170(1-2):59-65. doi: 10.1016/j.virusres.2012.08.018. [PubMed: 22974759].
  • 37. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301(5633):640-3. doi: 10.1126/science.1087262. [PubMed: 12855817].
  • 38. Rogers KA, Rogers AB, Leav BA, Sanchez A, Vannier E, Uematsu S, et al. MyD88-dependent pathways mediate resistance to Cryptosporidium parvum infection in mice. Infect Immun. 2006;74(1):549-56. doi: 10.1128/IAI.74.1.549-556.2006. [PubMed: 16369011]. [PubMed Central: PMC1346622].
  • 39. Lacroix-Lamande S, Guesdon W, Drouet F, Potiron L, Lantier L, Laurent F. The gut flora is required for the control of intestinal infection by poly(I:C) administration in neonates. Gut Microbes. 2014;5(4):533-40. doi: 10.4161/gmic.29154. [PubMed: 24918602].
  • 40. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413(6857):732-8. doi: 10.1038/35099560. [PubMed: 11607032].
  • 41. Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W, Mathur R, et al. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity. 2013;38(1):119-30. doi: 10.1016/j.immuni.2012.09.016. [PubMed: 23246311]. [PubMed Central: PMC3601573].
  • 42. Beiting DP, Peixoto L, Akopyants NS, Beverley SM, Wherry EJ, Christian DA, et al. Differential induction of TLR3-dependent innate immune signaling by closely related parasite species. PLoS One. 2014;9(2). e88398. doi: 10.1371/journal.pone.0088398. [PubMed: 24505488]. [PubMed Central: PMC3914978].
  • 43. Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE. Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol. 2004;24(21):9390-400. doi: 10.1128/MCB.24.21.9390-9400.2004. [PubMed: 15485908]. [PubMed Central: PMC522220].
  • 44. Kim KA, Min A, Lee YA, Shin MH. Degradation of the transcription factors NF-kappaB, STAT3, and STAT5 is involved in Entamoeba histolytica-induced cell death in Caco-2 colonic epithelial cells. Korean J Parasitol. 2014;52(5):459-69. doi: 10.3347/kjp.2014.52.5.459. [PubMed: 25352693]. [PubMed Central: PMC4210727].
  • 45. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430(6996):213-8. doi: 10.1038/nature02664. [PubMed: 15190255].
  • 46. Liu J, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS. Inhibition of apoptosis in Cryptosporidium parvum-infected intestinal epithelial cells is dependent on survivin. Infect Immun. 2008;76(8):3784-92. doi: 10.1128/IAI.00308-08. [PubMed: 18519556]. [PubMed Central: PMC2493198].
  • 47. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801. doi: 10.1016/j.cell.2006.02.015. [PubMed: 16497588].
  • 48. Beutler B, Eidenschenk C, Crozat K, Imler JL, Takeuchi O, Hoffmann JA, et al. Genetic analysis of resistance to viral infection. Nat Rev Immunol. 2007;7(10):753-66. doi: 10.1038/nri2174. [PubMed: 17893693].
  • 49. Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci U S A. 2010;107(4):1512-7. doi: 10.1073/pnas.0912986107. [PubMed: 20080593]. [PubMed Central: PMC2824407].
  • 50. Han SJ, Melichar HJ, Coombes JL, Chan SW, Koshy AA, Boothroyd JC, et al. Internalization and TLR-dependent type I interferon production by monocytes in response to Toxoplasma gondii. Immunol Cell Biol. 2014;92(10):872-81. doi: 10.1038/icb.2014.70. [PubMed: 25155465]. [PubMed Central: PMC4245188].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments