Jundishapur Journal of Microbiology

Published by: Kowsar

The Effect of Cu-BPDCA-Ty on Antibacterial Activity and The Expression of mecA Gene in Clinical and Standard Strains of Methicillin-Resistant Staphylococcus aureus

Marzieh Askarinia 1 , 4 , Mehrorang Ghaedi 2 , Leila Manzouri 3 , Seyed Sajjad Khoramrooz 4 , Asghar Sharifi 4 , Ghasem Ghalamfarsa 5 , Ramin Jannesar 6 , Farzad Sadri 7 and Seyed Abdolmajid Khosravani 4 , *
Authors Information
1 Student Research Committee, Yasuj University of Medical Sciences, Yasuj, IR Iran
2 Chemistry Department, Yasouj University, Yasouj 75918-74831, IR Iran
3 Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, IRr Iran
4 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
5 Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
6 Department of Molecular Microbiology, Dena pathobiology Laboratory, Yasouj, IR Iran
7 Young Researchers and Elite Club, Yasouj Branch, Islamic Azad University, Yasouj, IR Iran
Article information
  • Jundishapur Journal of Microbiology: March 2018, 11 (3); e60680
  • Published Online: February 10, 2018
  • Article Type: Research Article
  • Received: August 22, 2017
  • Revised: December 13, 2017
  • Accepted: December 20, 2017
  • DOI: 10.5812/jjm.60680

To Cite: Askarinia M, Ghaedi M, Manzouri L, Khoramrooz S S, Sharifi A, et al. The Effect of Cu-BPDCA-Ty on Antibacterial Activity and The Expression of mecA Gene in Clinical and Standard Strains of Methicillin-Resistant Staphylococcus aureus, Jundishapur J Microbiol. 2018 ; 11(3):e60680. doi: 10.5812/jjm.60680.

Abstract
Copyright © 2018, Jundishapur Journal of Microbiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
6. Conclusion
Acknowledgements
Footnotes
References
  • 1. Geofrey A, Abade A, Aboud S. Methicillin-resistant staphylococcus aureus (MRSA) colonization among Intensive Care Unit (ICU) patients and health care workers at Muhimbili national hospital, Dar Es Salaam, Tanzania, 2012. Pan Afr Med J. 2015;21:211. doi: 10.11604/pamj.2015.21.211.4207. [PubMed: 26448806].
  • 2. Kahanov L, Kim YK, Eberman L, Dannelly K, Kaur H, Ramalinga A. Staphylococcus aureus and community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in and around therapeutic whirlpools in college athletic training rooms. J Athl Train. 2015;50(4):432-7. doi: 10.4085/1062-6050-49.3.96. [PubMed: 25710853].
  • 3. Mocan L, Ilie I, Matea C, Tabaran F, Kalman E, Iancu C, et al. Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus. Int J Nanomedicine. 2014;9:1453-61. doi: 10.2147/IJN.S54950. [PubMed: 24711697].
  • 4. Abdel Rahim KA, Ali Mohamed AM. Bactericidal and antibiotic synergistic effect of nanosilver against methicillin resistant staphylococcus aureus. Jundishapur J Microbiol. 2015;8(11):25867. doi: 10.5812/jjm.25867. [PubMed: 26862383].
  • 5. Harastani HH, Tokajian ST. Community associated methicillin resistant staphylococcus aureus clonal complex 80 type IV (CC80 MRSA IV) isolated from the Middle East, a heterogeneous expanding clonal lineage. PLoS One. 2014;9(7):103715. doi: 10.1371/journal.pone.0103715. [PubMed: 25078407].
  • 6. Kraushaar B, Fetsch A. First description of PVL-positive methicillin-resistant Staphylococcus aureus (MRSA) in wild boar meat. Int J Food Microbiol. 2014;186:68-73. doi: 10.1016/j.ijfoodmicro.2014.06.018. [PubMed: 25016468].
  • 7. McKinney TK, Sharma VK, Craig WA, Archer GL. Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and beta-lactamase regulators. J Bacteriol. 2001;183(23):6862-8. doi: 10.1128/JB.183.23.6862-6868.2001. [PubMed: 11698375].
  • 8. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC Complement Altern Med. 2015;15:178. doi: 10.1186/s12906-015-0699-z. [PubMed: 26060128].
  • 9. Millenbaugh NJ, Baskin JB, DeSilva MN, Elliott WR, Glickman RD. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles. Int J Nanomedicine. 2015;10:1953-60. doi: 10.2147/IJN.S76150. [PubMed: 25834427].
  • 10. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83. doi: 10.1016/j.biotechadv.2008.09.002. [PubMed: 18854209].
  • 11. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941-65. doi: 10.2147/IJN.S134526. [PubMed: 28579779].
  • 12. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42(18):4591-602. doi: 10.1016/j.watres.2008.08.015. [PubMed: 18804836].
  • 13. Wyszogrodzka G, Marszalek B, Gil B, Dorozynski P. Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today. 2016;21(6):1009-18. doi: 10.1016/j.drudis.2016.04.009. [PubMed: 27091434].
  • 14. Santo CE, Quaranta D, Grass G. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen. 2012;1(1):46-52. doi: 10.1002/mbo3.2. [PubMed: 22950011].
  • 15. Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerfaces. 2012;96:50-5. doi: 10.1016/j.colsurfb.2012.03.021. [PubMed: 22521682].
  • 16. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing, CLSI document M100-S27. 24th ed. Wayne, PA: Clinical and Laboratory Standards Institute, (CLSI); 2017.
  • 17. Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005;43(10):5026-33. doi: 10.1128/JCM.43.10.5026-5033.2005. [PubMed: 16207957].
  • 18. Sahebekhtiari N, Nochi Z, Eslampour MA, Dabiri H, Bolfion M, Taherikalani M, et al. Characterization of Staphylococcus aureus strains isolated from raw milk of bovine subclinical mastitis in Tehran and Mashhad. Acta Microbiol Immunol Hung. 2011;58(2):113-21. doi: 10.1556/AMicr.58.2011.2.4. [PubMed: 21715281].
  • 19. Mousavinia SE, Hajati S, Ghaedi M, Dashtian K. Novel nanorose-like Ce(III)-doped and undoped Cu(II)-biphenyl-4,4-dicarboxylic acid (Cu(II)-BPDCA) MOSs as visible light photocatalysts: synthesis, characterization, photodegradation of toxic dyes and optimization. Phys Chem Chem Phys. 2016;18(16):11278-87. doi: 10.1039/c6cp00910g. [PubMed: 27053427].
  • 20. Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016;194:410-5. doi: 10.1016/j.foodchem.2015.07.139. [PubMed: 26471573].
  • 21. Duquenne M, Fleurot I, Aigle M, Darrigo C, Borezee-Durant E, Derzelle S, et al. Tool for quantification of staphylococcal enterotoxin gene expression in cheese. Appl Environ Microbiol. 2010;76(5):1367-74. doi: 10.1128/AEM.01736-09. [PubMed: 20061456].
  • 22. You YO, Choi NY, Kang SY, Kim KJ. Antibacterial Activity of Rhus javanica against Methicillin-Resistant Staphylococcus aureus. Evid Based Complement Alternat Med. 2013;2013:549207. doi: 10.1155/2013/549207. [PubMed: 24223060].
  • 23. Olowe OA, Kukoyi OO, Taiwo SS, Ojurongbe O, Opaleye OO, Bolaji OS, et al. Phenotypic and molecular characteristics of methicillin-resistant Staphylococcus aureus isolates from Ekiti State, Nigeria. Infect Drug Resist. 2013;6:87-92. doi: 10.2147/IDR.S48809. [PubMed: 23990730].
  • 24. Thangave A, Rajamanickam C, Sahu O, Ponnappan S, Abawa G, Tadele A. Molecular detection of mecA gene from methicillin resistant coagulase negative staphylococci. J Microbiol Biotechnol. 2017;7(2):11. doi: 10.24896/jmbr.2017723.
  • 25. Azad FN, Ghaedi M, Dashtian K, Hajati S, Pezeshkpour V. Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization. Ultrason Sonochem. 2016;31:383-93. doi: 10.1016/j.ultsonch.2016.01.024. [PubMed: 26964963].
  • 26. Zhuang W, Yuan D, Li JR, Luo Z, Zhou HC, Bashir S, et al. Highly potent bactericidal activity of porous metal-organic frameworks. Adv Healthc Mater. 2012;1(2):225-38. doi: 10.1002/adhm.201100043. [PubMed: 23184726].
  • 27. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13-14):1803-15. doi: 10.1016/j.addr.2013.07.011. [PubMed: 23892192].
  • 28. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol. 2010;60(1):75-80. doi: 10.1007/s13213-010-0015-6.
  • 29. Gunawan C, Teoh WY, Marquis CP, Amal R. Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano. 2011;5(9):7214-25. doi: 10.1021/nn2020248. [PubMed: 21812479].
  • 30. Rodriguez HS, Hinestroza JP, Ochoa Puentes C, Sierra CA, Soto CY. Antibacterial activity against Escherichia coliof Cu BTC, (MOF-199) metal organic framework immobilized onto cellulosic fibers. J Appl Polym Sci. 2014;131(19). doi: 10.1002/app.40815.
  • 31. Sancet MP, Hanke M, Wang Z, Bauer S, Azucena C, Arslan HK, et al. Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings. Biointerphases. 2013;8(1):29. doi: 10.1186/1559-4106-8-29. [PubMed: 24706148].
  • 32. Azam A, Ahmed AS, Oves M, Khan MS, Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine. 2012;7:3527-35. doi: 10.2147/IJN.S29020. [PubMed: 22848176].
  • 33. Abbasi AR, Akhbari K, Morsali A. Dense coating of surface mounted CuBTC Metal-Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem. 2012;19(4):846-52. doi: 10.1016/j.ultsonch.2011.11.016. [PubMed: 22204978].
  • 34. Lee JW, Ji YJ, Lee SO, Lee IS. Effect of Saliva miltiorrhiza bunge on antimicrobial activity and resistant gene regulation against methicillin-resistant Staphylococcus aureus (MRSA). J Microbiol. 2007;45(4):350-7. [PubMed: 17846590].
  • 35. Chovanova R, Mikulasova M, Vaverkova S. Modulation of mecA Gene Expression by Essential Oil from Salvia sclarea and Synergism with Oxacillin in Methicillin Resistant Staphylococcus epidermidis Carrying Different Types of Staphylococcal Chromosomal Cassette mec. Int J Microbiol. 2016;2016:6475837. doi: 10.1155/2016/6475837. [PubMed: 26880926].
  • 36. Choi NY, Kang SY, Kim KJ. Artemisia princeps Inhibits Biofilm Formation and Virulence-Factor Expression of Antibiotic-Resistant Bacteria. Biomed Res Int. 2015;2015:239519. doi: 10.1155/2015/239519. [PubMed: 26247012].
  • 37. Qiu TA, Meyer BM, Christenson KG, Klaper RD, Haynes CL. A mechanistic study of TiO2 nanoparticle toxicity on Shewanella oneidensis MR-1 with UV containing simulated solar irradiation, Bacterial growth, riboflavin secretion, and gene expression. Chemosphere. 2017;168:1158-68. doi: 10.1016/j.chemosphere.2016.10.085. [PubMed: 27823777].
  • 38. Saghalli M, Bidoki SK, Jamali A, Bagheri H, Ghaemi EA. Sub minimum inhibitory concentrations of Zinc Oxide nanoparticles reduce the expression of the staphylococcus aureus Alpha-Hemolysin. Indian J Pharm Sci. 2016;78(6):763-8. doi: 10.4172/pharmaceutical-sciences.1000181.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments