Jundishapur Journal of Microbiology

Published by: Kowsar

Determination of Acquired Resistance Profiles of Pseudomonas aeruginosa Isolates and Characterization of an Effective Bacteriocin-Like Inhibitory Substance (BLIS) Against These Isolates

Dariush Shokri 1 , Mohammad Rabbani Khorasgani 1 , * , Saeideh Zaghian 2 , Seyed Masih Fatemi 3 , Milad Mohkam 4 , Younes Ghasemi 4 and Asghar Taheri-Kafrani 5
Authors Information
1 Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran
2 Nanobiotechnology Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
3 Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran
4 Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, IR Iran
5 Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, IR Iran
Article information
  • Jundishapur Journal of Microbiology: August 2016, 9 (8); e60099
  • Published Online: May 29, 2016
  • Article Type: Research Article
  • Received: September 1, 2015
  • Revised: December 25, 2015
  • Accepted: April 18, 2016
  • DOI: 10.5812/jjm.32795

To Cite: Shokri D, Rabbani Khorasgani M, Zaghian S, Fatemi S M, Mohkam M, et al. Determination of Acquired Resistance Profiles of Pseudomonas aeruginosa Isolates and Characterization of an Effective Bacteriocin-Like Inhibitory Substance (BLIS) Against These Isolates, Jundishapur J Microbiol. 2016 ; 9(8):e60099. doi: 10.5812/jjm.32795.

Abstract
Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Ha DG, O'Toole GA. c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review. Microbiol Spectr. 2015; 3(2)-3-2014[DOI][PubMed]
  • 2. Bierbaum G, Sahl HG. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol. 2009; 10(1): 2-18[PubMed]
  • 3. Rybalchenko OV, Bondarenko VM, Orlova OG, Markov AG, Amasheh S. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation. Arch Microbiol. 2015; 197(8): 1027-32[DOI][PubMed]
  • 4. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015; 2015: 759348[DOI][PubMed]
  • 5. Martinez FA, Dominguez JM, Converti A, Oliveira RP. Production of bacteriocin-like inhibitory substance by Bifidobacterium lactis in skim milk supplemented with additives. J Dairy Res. 2015; 82(3): 350-5[DOI][PubMed]
  • 6. Ayed HB, Maalej H, Hmidet N, Nasri M. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J Glob Antimicrob Resist. 2015; 3(4): 255-61[DOI]
  • 7. Tapiba VM, Nasr NF, Higazy AM. Isolation, Identification and Application of Bacteriocin-Like Inhibitory Substances Producing Bacterial Strains. Int J Curr Microbiol App Sci. 2015; 4(8): 333-42
  • 8. Ghoul M, West SA, Johansen HK, Molin S, Harrison OB, Maiden MC, et al. Bacteriocin-mediated competition in cystic fibrosis lung infections. Proc Biol Sci. 2015; 282(1814)[DOI][PubMed]
  • 9. Joshi A, Grinter R, Josts I, Chen S, Wojdyla JA, Lowe ED, et al. Structures of the Ultra-High-Affinity Protein-Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa. J Mol Biol. 2015; 427(17): 2852-66[DOI][PubMed]
  • 10. Kaur S, Sharma P. Protease-Sensitive Inhibitory Activity of Cell-free Supernatant of Lactobacillus crispatus 156 Synergizes with Ciprofloxacin, Moxifloxacin and Streptomycin Against Pseudomonas aeruginosa: An In Vitro Study. Probiotics Antimicrob Proteins. 2015; 7(2): 172-80[DOI][PubMed]
  • 11. Sahoo TK, Jena PK, Patel AK, Seshadri S. Purification and Molecular Characterization of the Novel Highly Potent Bacteriocin TSU4 Produced by Lactobacillus animalis TSU4. Appl Biochem Biotechnol. 2015; 177(1): 90-104[DOI][PubMed]
  • 12. Woraprayote W, Pumpuang L, Tosukhowong A, Roytrakul S, Perez RH, Zendo T, et al. Two putatively novel bacteriocins active against Gram-negative food borne pathogens produced by Weissella hellenica BCC 7293. Food Control. 2015; 55: 176-84
  • 13. Parret AH, Temmerman K, De Mot R. Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol. 2005; 71(9): 5197-207[DOI][PubMed]
  • 14. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18(3): 268-81[DOI][PubMed]
  • 15. Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D. Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot (Tokyo). 2010; 63(8): 423-30[DOI][PubMed]
  • 16. Forbes BA, Wesisfeld AS. Bailley and Scotte's Diagnostic Microbilogy. 2014;
  • 17. Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved standard M2-A9. 2014;
  • 18. Tahiri I, Desbiens M, Benech R, Kheadr E, Lacroix C, Thibault S, et al. Purification, characterization and amino acid sequencing of divergicin M35: a novel class IIa bacteriocin produced by Carnobacterium divergens M35. Int J Food Microbiol. 2004; 97(2): 123-36[DOI][PubMed]
  • 19. Mirhosseini M, Nahvi I, Emtiazi G, Tavassoli M. Characterisation of anti‐Listeria monocytogenes bacteriocins from Enterococcus faecium strains isolated from dairy products. Int J Dairy Technol. 2010; 63(1): 55-61[DOI]
  • 20. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016; 306(1): 48-58[DOI][PubMed]
  • 21. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents. 2015; 45(6): 568-85[DOI][PubMed]
  • 22. Gomila M, Del Carmen Gallegos M, Fernandez-Baca V, Pareja A, Pascual M, Diaz-Antolin P, et al. Genetic diversity of clinical Pseudomonas aeruginosa isolates in a public hospital in Spain. BMC Microbiol. 2013; 13: 138[DOI][PubMed]
  • 23. Mulet X, Cabot G, Ocampo-Sosa AA, Dominguez MA, Zamorano L, Juan C, et al. Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother. 2013; 57(11): 5527-35[DOI][PubMed]
  • 24. Chung DR, Song JH, Kim SH, Thamlikitkul V, Huang SG, Wang H, et al. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med. 2011; 184(12): 1409-17[DOI][PubMed]
  • 25. Akya A, Salimi A, Nomanpour B, Ahmadi K. Prevalence and Clonal Dissemination of Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa in Kermanshah. Jundishapur J Microbiol. 2015; 8(7)[DOI][PubMed]
  • 26. Dash M, Padhi S, Narasimham MV, Pattnaik S. Antimicrobial resistance pattern of Pseudomonas aeruginosa isolated from various clinical samples in a tertiary care hospital, South Odisha, India. Am J Respir Crit Care Med. 2014; 184(12): 1409-17[DOI]
  • 27. Mohanasoundaram K. the antimicrobial resistance pattern in the clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital; 2008-2010 (A 3 year study). Clin Diagnost Res J. 2011; 5(3): 491-4
  • 28. Gill MM, Usman J, Kaleem F, Hassan A, Khalid A, Anjum R, et al. Frequency and antibiogram of multi-drug resistant Pseudomonas aeruginosa. J Coll Physicians Surg Pak. 2011; 21(9): 531-4[PubMed]
  • 29. Jack RW, Tagg JR, Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995; 59(2): 171-200[PubMed]
  • 30. Martinez JL, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev. 2002; 15(4): 647-79[PubMed]
  • 31. do Nascimento Mda S, Moreno I, Kuaye AY. Antimicrobial activity of Enterococcus Faecium Fair-E 198 against gram-positive pathogens. Braz J Microbiol. 2010; 41(1): 74-81[DOI][PubMed]
  • 32. Nilsen T, Nes IF, Holo H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol. 2003; 69(5): 2975-84[PubMed]
  • 33. Zendo T, Eungruttanagorn N, Fujioka S, Tashiro Y, Nomura K, Sera Y, et al. Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. J Appl Microbiol. 2005; 99(5): 1181-90[DOI][PubMed]
  • 34. Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: a probiotic trait? Appl Environ Microbiol. 2012; 78(1): 1-6[DOI][PubMed]
  • 35. Lee JH, Karamychev VN, Kozyavkin SA, Mills D, Pavlov AR, Pavlova NV, et al. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics. 2008; 9: 247[DOI][PubMed]
  • 36. Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A. 2007; 104(18): 7617-21[DOI][PubMed]
  • 37. Zaghian S, Shokri D, Emtiazi G. Co-production of a UV-stable bacteriocin-like inhibitory substance (BLIS) and indole-3-acetic acid hormone (IAA) and their optimization by Taguchi design in Bacillus pumilus. Ann Microbiol. 2012; 62(3): 1189-97[DOI]
  • 38. Acuna L, Picariello G, Sesma F, Morero RD, Bellomio A. A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio. 2012; 2: 12-9[DOI][PubMed]
  • 39. Shokri D, Zaghian S, Khodabakhsh F, Fazeli H, Mobasherizadeh S, Ataei B. Antimicrobial activity of a UV-stable bacteriocin-like inhibitory substance (BLIS) produced by Enterococcus faecium strain DSH20 against vancomycin-resistant Enterococcus (VRE) strains. J Microbiol Immunol Infect. 2014; 47(5): 371-6[DOI][PubMed]
  • 40. Brown CL, Smith K, McCaughey L, Walker D. Colicin-like bacteriocins as novel therapeutic agents for the treatment of chronic biofilm-mediated infection. Biochem Soc Trans. 2012; 40(6): 1549-52[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments