Jundishapur Journal of Microbiology

Published by: Kowsar

Evaluation of mRNA Expression Levels of cyp51A and mdr1, Candidate Genes for Voriconazole Resistance in Aspergillus flavus

Azam Fattahi 1 , Farideh Zaini 1 , Parivash Kordbacheh 1 , Sasan Rezaie 1 , Mahin Safara 1 , Roohollah Fateh 2 , Shirin Farahyar 3 , Ali Kanani 1 and Mansour Heidari 4 , 5 , *
Authors Information
1 Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
2 Department of Microbiology and Immunology, Faculty of Medicine, Qom University of Medical Sciences, Qom, IR Iran
3 Department of Medical Mycology and Parasitology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, IR Iran
4 Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, IR Iran
5 Exprerimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: December 2015, 8 (12); e59927
  • Published Online: December 26, 2015
  • Article Type: Research Article
  • Received: February 6, 2015
  • Revised: May 11, 2015
  • Accepted: May 24, 2015
  • DOI: 10.5812/jjm.26990

To Cite: Fattahi A, Zaini F, Kordbacheh P, Rezaie S, Safara M, et al. Evaluation of mRNA Expression Levels of cyp51A and mdr1, Candidate Genes for Voriconazole Resistance in Aspergillus flavus, Jundishapur J Microbiol. 2015 ; 8(12):e59927. doi: 10.5812/jjm.26990.

Abstract
Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Denning DW, Perlin DS. Azole resistance in Aspergillus: a growing public health menace. Future Microbiol. 2011; 6(11): 1229-32[DOI][PubMed]
  • 2. Liu W, Sun Y, Chen W, Liu W, Wan Z, Bu D, et al. The T788G mutation in the cyp51C gene confers voriconazole resistance in Aspergillus flavus causing aspergillosis. Antimicrob Agents Chemother. 2012; 56(5): 2598-603[DOI][PubMed]
  • 3. Bille J, Marchetti O, Calandra T. Changing face of health-care associated fungal infections. Curr Opin Infect Dis. 2005; 18(4): 314-9[PubMed]
  • 4. Chakrabarti A, Singh R. The emerging epidemiology of mould infections in developing countries. Curr Opin Infect Dis. 2011; 24(6): 521-6[DOI][PubMed]
  • 5. Lopez-Cortes LE, Garcia-Vidal C, Ayats J, Gudiol C, Bodro M, Sanchez-Ortega I, et al. [Invasive aspergillosis with extrapulmonary involvement: pathogenesis, clinical characteristics and prognosis]. Rev Iberoam Micol. 2012; 29(3): 139-43[DOI][PubMed]
  • 6. Malani AN, Kauffman CA. Changing epidemiology of rare mould infections: implications for therapy. Drugs. 2007; 67(13): 1803-12[PubMed]
  • 7. Van Der Linden JW, Warris A, Verweij PE. Aspergillus species intrinsically resistant to antifungal agents. Med Mycol. 2011; 49 Suppl 1-9[DOI][PubMed]
  • 8. Chen CY, Sheng WH, Cheng A, Chen YC, Tsay W, Tang JL, et al. Invasive fungal sinusitis in patients with hematological malignancy: 15 years experience in a single university hospital in Taiwan. BMC Infect Dis. 2011; 11: 250[DOI][PubMed]
  • 9. Ferreira ME, Colombo AL, Paulsen I, Ren Q, Wortman J, Huang J, et al. The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol. 2005; 43 Suppl 1-9[PubMed]
  • 10. Howard SJ, Pasqualotto AC, Denning DW. Azole resistance in allergic bronchopulmonary aspergillosis and Aspergillus bronchitis. Clin Microbiol Infect. 2010; 16(6): 683-8[DOI][PubMed]
  • 11. Krishnan-Natesan S, Chandrasekar PH, Alangaden GJ, Manavathu EK. Molecular characterisation of cyp51A and cyp51B genes coding for P450 14alpha-lanosterol demethylases A (CYP51Ap) and B (CYP51Bp) from voriconazole-resistant laboratory isolates of Aspergillus flavus. Int J Antimicrob Agents. 2008; 32(6): 519-24[DOI][PubMed]
  • 12. Mann PA, Parmegiani RM, Wei SQ, Mendrick CA, Li X, Loebenberg D, et al. Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P450 14alpha-demethylase. Antimicrob Agents Chemother. 2003; 47(2): 577-81[PubMed]
  • 13. Howard SJ, Arendrup MC. Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection. Med Mycol. 2011; 49 Suppl 1-5[DOI][PubMed]
  • 14. Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, Pasqualotto AC, et al. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009; 15(7): 1068-76[DOI][PubMed]
  • 15. Snelders E, Melchers WJ, Verweij PE. Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis? Future Microbiol. 2011; 6(3): 335-47[DOI][PubMed]
  • 16. Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, et al. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother. 2008; 52(11): 3851-62[DOI][PubMed]
  • 17. Rogers PD, Barker KS. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother. 2003; 47(4): 1220-7[PubMed]
  • 18. Jost KE. Characterization of ABC-Efflux Pump AflMDR2 in Voriconazole Resistant Isolates of Aspergillus flavus. 2010;
  • 19. Natesan SK, Lamichchane AK, Swaminathan S, Wu W. Differential expression of ATP-binding cassette and/or major facilitator superfamily class efflux pumps contributes to voriconazole resistance in Aspergillus flavus. Diagn Microbiol Infect Dis. 2013; 76(4): 458-63[DOI][PubMed]
  • 20. Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol. 2005; 43(4): 285-318[PubMed]
  • 21. Del Sorbo G, Schoonbeek H, De Waard MA. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol. 2000; 30(1): 1-15[PubMed]
  • 22. Ernst R, Klemm R, Schmitt L, Kuchler K. Yeast ATP-binding cassette transporters: cellular cleaning pumps. Methods Enzymol. 2005; 400: 460-84[DOI][PubMed]
  • 23. Marger MD, Saier MH. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993; 18(1): 13-20[PubMed]
  • 24. Wayne P. Clinical and Laboratory Standards Institute: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard M38A3. Chicago; Clinical and Laboratory Standards InstituteWayne. 2008;
  • 25. Wayne P. Clinical and Laboratory Standards Insititute. Reference method for broth dilution antifungal susceptibility testing of Yeast; informational supplement, M27-A3. Chicago; Clinical and Laboratory Standards Institute,Wayne. 2007;
  • 26. Semighini CP, Marins M, Goldman MH, Goldman GH. Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol. 2002; 68(3): 1351-7[PubMed]
  • 27. Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, Saffari M, Raoofian R, Hajjaran H, et al. Identification of antimony resistance markers in Leishmania tropica field isolates through a cDNA-AFLP approach. Exp Parasitol. 2013; 135(2): 344-9[DOI][PubMed]
  • 28. Tavakoli M, Zaini F, Kordbacheh M, Safara M, Raoofian R, Heidari M. Upregulation of the ERG11 gene in Candida krusei by azoles. Daru. 2010; 18(4): 276-80[PubMed]
  • 29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402-8[DOI][PubMed]
  • 30. Howard SJ, Webster I, Moore CB, Gardiner RE, Park S, Perlin DS, et al. Multi-azole resistance in Aspergillus fumigatus. Int J Antimicrob Agents. 2006; 28(5): 450-3[DOI][PubMed]
  • 31. Pelaez T, Gijon P, Bunsow E, Bouza E, Sanchez-Yebra W, Valerio M, et al. Resistance to voriconazole due to a G448S substitution in Aspergillus fumigatus in a patient with cerebral aspergillosis. J Clin Microbiol. 2012; 50(7): 2531-4[DOI][PubMed]
  • 32. Mellado E, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL. Role of Aspergillus lentulus 14-alpha sterol demethylase (Cyp51A) in azole drug susceptibility. Antimicrob Agents Chemother. 2011; 55(12): 5459-68[DOI][PubMed]
  • 33. Lampen A, Ebert B, Stumkat L, Jacob J, Seidel A. Induction of gene expression of xenobiotic metabolism enzymes and ABC-transport proteins by PAH and a reconstituted PAH mixture in human Caco-2 cells. Biochim Biophys Acta. 2004; 1681(1): 38-46[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments