Jundishapur Journal of Microbiology

Published by: Kowsar

Evaluation of CD4+ CD25+ FoxP3+ Regulatory T cells and FoxP3 and CTLA-4 gene Expression in Patients wwith Newly Diagnosed Tuberculosis in Northeast of Iran

Roghayeh Ghazalsofala 1 , Seyed Abdolrahim Rezaee 1 , Houshang Rafatpanah 2 , Rosita Vakili 1 , Kiarash Ghazvini 3 , Fatemeh Heidarnejad 1 , Somaye Sobhani 1 , Narges Valizadeh 1 , Marayam Azami 4 , Marzieh Rahimzadegan 5 and Amir Asnaashari 4 , *
Authors Information
1 Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
2 Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
3 Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
4 Chronic Obstructive Pulmonary Disease Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
5 Infection Diseases Department, Mashhad University of Medical Sciences, Mashhad, IR Iran
Article information
  • Jundishapur Journal of Microbiology: April 2015, 8 (4); e59830
  • Published Online: April 18, 2015
  • Article Type: Research Article
  • Received: June 3, 2014
  • Revised: June 8, 2014
  • Accepted: August 2, 2014
  • DOI: 10.5812/jjm.8(4)2015.17726

To Cite: Ghazalsofala R, Rezaee S A, Rafatpanah H, Vakili R, Ghazvini K, et al. Evaluation of CD4+ CD25+ FoxP3+ Regulatory T cells and FoxP3 and CTLA-4 gene Expression in Patients wwith Newly Diagnosed Tuberculosis in Northeast of Iran, Jundishapur J Microbiol. 2015 ; 8(4):e59830. doi: 10.5812/jjm.8(4)2015.17726.

Abstract
Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Sharma SK, Liu JJ. Progress of DOTS in global tuberculosis control. Lancet. 2006; 367(9514): 951-2[DOI][PubMed]
  • 2. World Health Organization . Tuberculosis. 2013;
  • 3. Bello AK, Njoku CH. Tuberculosis: current trends in diagnosis and treatment. Niger J Clin Pract. 2005; 8(2): 118-24[PubMed]
  • 4. Figueiredo AA, Lucon AM. Urogenital tuberculosis: update and review of 8961 cases from the world literature. Rev Urol. 2008; 10(3): 207-17[PubMed]
  • 5. Schmidt CW. Linking TB and the environment: an overlooked mitigation strategy. Environ Health Perspect. 2008; 116(11)-85[PubMed]
  • 6. Global tuberculosis control. 2011;
  • 7. Derakhshan M, Safdari H, Sadeghi A, Ghazvini K, Mohammadi S. Prevalence of Mycobacterium tuberculosis in the samples referred to the tuberculosis research laboratory in Mashhad Ghaem Hospital during 2005-2006. Iran J Microbiol­. 2009; 1(3): 20-2
  • 8. Pawlowski A, Jansson M, Skold M, Rottenberg ME, Kallenius G. Tuberculosis and HIV co-infection. PLoS Pathog. 2012; 8(2)[DOI][PubMed]
  • 9. Stenger S, Modlin RL. T cell mediated immunity to Mycobacterium tuberculosis. Curr Opin Microbiol. 1999; 2(1): 89-93[PubMed]
  • 10. Marin ND, Paris SC, Velez VM, Rojas CA, Rojas M, Garcia LF. Regulatory T cell frequency and modulation of IFN-gamma and IL-17 in active and latent tuberculosis. Tuberculosis (Edinb). 2010; 90(4): 252-61[DOI][PubMed]
  • 11. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001; 19: 93-129[DOI][PubMed]
  • 12. Lienhardt C, Azzurri A, Amedei A, Fielding K, Sillah J, Sow OY, et al. Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. Eur J Immunol. 2002; 32(6): 1605-13[PubMed]
  • 13. Rook GA, Hernandez-Pando R, Dheda K, Teng Seah G. IL-4 in tuberculosis: implications for vaccine design. Trends Immunol. 2004; 25(9): 483-8[DOI][PubMed]
  • 14. Holscher C, Holscher A, Ruckerl D, Yoshimoto T, Yoshida H, Mak T, et al. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J Immunol. 2005; 174(6): 3534-44[PubMed]
  • 15. Chiacchio T, Casetti R, Butera O, Vanini V, Carrara S, Girardi E, et al. Characterization of regulatory T cells identified as CD4(+)CD25(high)CD39(+) in patients with active tuberculosis. Clin Exp Immunol. 2009; 156(3): 463-70[DOI][PubMed]
  • 16. Yi H, Zhen Y, Jiang L, Zheng J, Zhao Y. The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell Mol Immunol. 2006; 3(3): 189-95[PubMed]
  • 17. Vrabelova Z, Hrotekova Z, Hladikova Z, Bohmova K, Stechova K, Michalek J. CD 127- and FoxP3+ expression on CD25+CD4+ T regulatory cells upon specific diabetogeneic stimulation in high-risk relatives of type 1 diabetes mellitus patients. Scand J Immunol. 2008; 67(4): 404-10[DOI][PubMed]
  • 18. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int Immunol. 2009; 21(10): 1105-11[DOI][PubMed]
  • 19. Verhagen J, Akdis M, Traidl-Hoffmann C, Schmid-Grendelmeier P, Hijnen D, Knol EF, et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol. 2006; 117(1): 176-83[DOI][PubMed]
  • 20. Lan RY, Cheng C, Lian ZX, Tsuneyama K, Yang GX, Moritoki Y, et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology. 2006; 43(4): 729-37[DOI][PubMed]
  • 21. Park O, Grishina I, Leung PS, Gershwin ME, Prindiville T. Analysis of the Foxp3/scurfin gene in Crohn's disease. Ann N Y Acad Sci. 2005; 1051: 218-28[DOI][PubMed]
  • 22. Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med. 2010; 207(7): 1409-20[DOI][PubMed]
  • 23. He XY, Xiao L, Chen HB, Hao J, Li J, Wang YJ, et al. T regulatory cells and Th1/Th2 cytokines in peripheral blood from tuberculosis patients. Eur J Clin Microbiol Infect Dis. 2010; 29(6): 643-50[DOI][PubMed]
  • 24. Pang H, Yu Q, Guo B, Jiang Y, Wan L, Li J, et al. Frequency of regulatory T-cells in the peripheral blood of patients with pulmonary tuberculosis from shanxi province, china. PLoS One. 2013; 8(6)[DOI][PubMed]
  • 25. Burl S, Hill PC, Jeffries DJ, Holland MJ, Fox A, Lugos MD, et al. FOXP3 gene expression in a tuberculosis case contact study. Clin Exp Immunol. 2007; 149(1): 117-22[DOI][PubMed]
  • 26. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005; 22(3): 329-41[DOI][PubMed]
  • 27. de Almeida AS, Fiske CT, Sterling TR, Kalams SA. Increased frequency of regulatory T cells and T lymphocyte activation in persons with previously treated extrapulmonary tuberculosis. Clin Vaccine Immunol. 2012; 19(1): 45-52[DOI][PubMed]
  • 28. Chen X, Zhou B, Li M, Deng Q, Wu X, Le X, et al. CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin Immunol. 2007; 123(1): 50-9[DOI][PubMed]
  • 29. Ye ZJ, Zhou Q, Du RH, Li X, Huang B, Shi HZ. Imbalance of Th17 cells and regulatory T cells in tuberculous pleural effusion. Clin Vaccine Immunol. 2011; 18(10): 1608-15[DOI][PubMed]
  • 30. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med. 2006; 173(7): 803-10[DOI][PubMed]
  • 31. Roberts T, Beyers N, Aguirre A, Walzl G. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta , and interleukin-4 mRNA levels. J Infect Dis. 2007; 195(6): 870-8[DOI][PubMed]
  • 32. Caramori G, Lasagna L, Casalini AG, Adcock IM, Casolari P, Contoli M, et al. Immune response to Mycobacterium tuberculosis infection in the parietal pleura of patients with tuberculous pleurisy. PLoS One. 2011; 6(7)[DOI][PubMed]
  • 33. Hanekom WA. The immune response to BCG vaccination of newborns. Ann N Y Acad Sci. 2005; 1062: 69-78[DOI][PubMed]
  • 34. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol. 2007; 37(1): 129-38[DOI][PubMed]
  • 35. Pillai V, Ortega SB, Wang CK, Karandikar NJ. Transient regulatory T-cells: a state attained by all activated human T-cells. Clin Immunol. 2007; 123(1): 18-29[DOI][PubMed]
  • 36. Wallgren A. The time-table of tuberculosis. Tubercle. 1948; 29(11): 245-51[PubMed]
  • 37. Poulsen A. Some clinical features of tuberculosis. 1 incubation period. Acta TubercScand. 1950; 24(4): 311-46
  • 38. Larson RP, Shafiani S, Urdahl KB. Foxp3(+) regulatory T cells in tuberculosis. Adv Exp Med Biol. 2013; 783: 165-80[DOI][PubMed]
  • 39. Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 2011; 11(2): 119-30[DOI][PubMed]
  • 40. Suffia IJ, Reckling SK, Piccirillo CA, Goldszmid RS, Belkaid Y. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J Exp Med. 2006; 203(3): 777-88[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments