Jundishapur Journal of Microbiology

Published by: Kowsar

Comparative Gene Expression Analysis within Mouse Macrophage for Identifying Critical Pathways in Macrophage and Brucella suis Interaction

Jing Hu 1 , Tonglian Wang 2 , Hongbo Zhao 3 , Yuzhu Song 2 , Qinqin Han 2 , Jinyang Zhang 2 , Tao Shou 1 , Fan Zhang 4 , Xueshan Xia 2 and Qiang Chen 2 , *
Authors Information
1 Medical Oncology, The First People’s Hospital of Yunnan Province, Kunming, P.R. China
2 Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
3 Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, P.R. China
4 Department of Gastroenterology, The Third People’s Hospital of Yunnan Province, Kunming, P.R. China
Article information
  • Jundishapur Journal of Microbiology: October 2017, 10 (10); e59275
  • Published Online: October 5, 2017
  • Article Type: Research Article
  • Received: April 1, 2017
  • Revised: August 21, 2017
  • Accepted: August 28, 2017
  • DOI: 10.5812/jjm.59275

To Cite: Hu J, Wang T, Zhao H, Song Y, Han Q, et al. Comparative Gene Expression Analysis within Mouse Macrophage for Identifying Critical Pathways in Macrophage and Brucella suis Interaction, Jundishapur J Microbiol. 2017 ; 10(10):e59275. doi: 10.5812/jjm.59275.

Abstract
Copyright © 2017, Jundishapur Journal of Microbiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
6. Conclusions
Acknowledgements
Footnotes
References
  • 1. Chen F, Ding X, Ding Y, Xiang Z, Li X, Ghosh D, et al. Proinflammatory caspase-2-mediated macrophage cell death induced by a rough attenuated Brucella suis strain. Infect Immun. 2011; 79(6): 2460-9[DOI][PubMed]
  • 2. Whatmore AM. Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infect Genet Evol. 2009; 9(6): 1168-84[DOI][PubMed]
  • 3. Liautard JP, Gross A, Dornand J, Kohler S. Interactions between professional phagocytes and Brucella spp. Microbiologia. 1996; 12(2): 197-206[PubMed]
  • 4. Chen F, He Y. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus. PLoS One. 2009; 4(8)[DOI][PubMed]
  • 5. He Y, Reichow S, Ramamoorthy S, Ding X, Lathigra R, Craig JC, et al. Brucella melitensis triggers time-dependent modulation of apoptosis and down-regulation of mitochondrion-associated gene expression in mouse macrophages. Infect Immun. 2006; 74(9): 5035-46[DOI][PubMed]
  • 6. Pei J, Kahl-McDonagh M, Ficht TA. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Front Cell Infect Microbiol. 2014; 4: 23[DOI][PubMed]
  • 7. Faherty CS, Maurelli AT. Staying alive: bacterial inhibition of apoptosis during infection. Trends Microbiol. 2008; 16(4): 173-80[DOI][PubMed]
  • 8. Gao LY, Kwaik YA. The mechanism of killing and exiting the protozoan host Acanthamoeba polyphaga by Legionella pneumophila. Environ Microbiol. 2000; 2(1): 79-90[PubMed]
  • 9. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34(3): 267-73[DOI][PubMed]
  • 10. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Nation Acad Sci. 2005; 102(43): 15545-50[DOI]
  • 11. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004; 5(10)[DOI]
  • 12. Irizarry RA. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4(2): 249-64[DOI]
  • 13. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004; 20(3): 307-15[DOI]
  • 14. Zhao H, Huang M, Chen Q, Wang Q, Pan Y. Comparative gene expression analysis in mouse models for identifying critical pathways in mammary gland development. Breast Cancer Res Treat. 2011; 132(3): 969-77[DOI]
  • 15. Gao G, Xu J. Important Biology Events and Pathways in Brucella Infection and Implications for Novel Antibiotic Drug Targets. Crit Rev Eukaryotic Gene Express. 2013; 23(1): 65-76[DOI]
  • 16. Eskra L, Mathison A, Splitter G. Microarray Analysis of mRNA Levels from RAW264.7 Macrophages Infected with Brucella abortus. Infect Immun. 2003; 71(3): 1125-33[DOI]
  • 17. Cha SB, Lee WJ, Shin MK, Jung MH, Shin SW, Yoo AN, et al. Early transcriptional responses of internalization defective Brucella abortus mutants in professional phagocytes, RAW 264.7. BMC Genomics. 2013; 14(1): 426[DOI]
  • 18. Campos MA, Rosinha GMS, Almeida IC, Salgueiro XS, Jarvis BW, Splitter GA, et al. Role of Toll-Like Receptor 4 in Induction of Cell-Mediated Immunity and Resistance to Brucella abortus Infection in Mice. Infect Immun. 2003; 72(1): 176-86[DOI]
  • 19. Pei J, Ding X, Fan Y, Rice-Ficht A, Ficht TA. Toll-like receptors are critical for clearance of Brucella and play different roles in development of adaptive immunity following aerosol challenge in mice. Front Cell Infect Microbiol. 2012; 2[DOI]
  • 20. de Almeida LA, Macedo GC, Marinho FAV, Gomes MTR, Corsetti PP, Silva AM, et al. Toll-Like Receptor 6 Plays an Important Role in Host Innate Resistance to Brucella abortus Infection in Mice. Infect Immun. 2013; 81(5): 1654-62[DOI]
  • 21. Ojcius D, Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzmán-Verri C, Chacón-Díaz C, et al. Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection. PLoS ONE. 2007; 2(7)[DOI]
  • 22. Kell AM, Gale M. RIG-I in RNA virus recognition. Virology. 2015; 479-480: 110-21[DOI]
  • 23. Sato S, Li K, Kameyama T, Hayashi T, Ishida Y, Murakami S, et al. The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus. Immunity. 2015; 42(1): 123-32[DOI]
  • 24. Fan X, Dong S, Li Y, Ding S, Wang M. RIG-I-dependent antiviral immunity is effective against an RNA virus encoding a potent suppressor of RNAi. Biochem Biophys Res Commun. 2015; 460(4): 1035-40[DOI]
  • 25. Du Z, Yang H, Tan Y, Tian G, Zhang Q, Cui Y, et al. Transcriptomic response to Yersinia pestis: RIG-I like receptor signaling response is detrimental to the host against plague. J Genet Genomics. 2014; 41(7): 379-96[DOI][PubMed]
  • 26. Dempsey A, Bowie AG. Innate immune recognition of DNA: A recent history. Virology. 2015; 479-480: 146-52[DOI]
  • 27. Keating SE, Baran M, Bowie AG. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol. 2011; 32(12): 574-81[DOI]
  • 28. Manzanillo P S, Shiloh M U, Portnoy D A, Cox JS. Mycobacterium Tuberculosis Activates the DNA-Dependent Cytosolic Surveillance Pathway within Macrophages. Cell Host Microbe. 2012; 11(5): 469-80[DOI]
  • 29. Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol. 2010; 11(5): 385-93[DOI]
  • 30. Celli J. Intracellular localization of Brucella abortus and Francisella tularensis in primary murine macrophages. Bacterial Pathogenesis Methods Protocols. 2008; : 133-45
  • 31. Khateeb MI, Araj GF, Majeed SA, Lulu AR. Brucella arthritis: a study of 96 cases in Kuwait. Ann Rheumatic Dis. 1990; 49(12): 994-8[DOI]
  • 32. Norton WL. Brucellosis and rheumatic syndromes in Saudi Arabia. Ann Rheumatic Dis. 1984; 43(6): 810-5[DOI]
  • 33. Porat S, Shapiro M. Brucella arthritis of the sacro-iliac joint. Infection. 1984; 12(3): 205-7[DOI]
  • 34. Kooraki S, Mohazab RA, Zamani N, Matloob R, Hayatbakhsh M, Raeeskarami SR, et al. Epidemiological and clinical features of Brucella arthritis in 24 children. Ann Saudi Med. 2011; 31(3): 270[DOI]
  • 35. Wong TM, Lou N, Jin W, Leung F, To M, Leung F. Septic arthritis caused by Brucella melitensis in urban Shenzhen, China: a case report. J Med Case Rep. 2014; 8(1)[DOI]
  • 36. McInnes IB, Schett G. The Pathogenesis of Rheumatoid Arthritis. N England J Med. 2011; 365(23): 2205-19[DOI]
  • 37. Smolen JS, Redlich K, Zwerina J, Aletaha D, Steiner G, Schett G. Pro-Inflammatory Cytokines in Rheumatoid Arthritis: Pathogenetic and Therapeutic Aspects. Clin Rev Allergy Immunol. 2005; 28(3): 239-48[DOI]
  • 38. Chen AY, Qiu J. Parvovirus infection-induced cell death and cell cycle arrest. Future Virol. 2010; 5(6): 731-43[DOI]
  • 39. Bagga S, Bouchard MJ. Cell Cycle Regulation During Viral Infection. Methods Mol Biol. 2014; 1170: 165-227[DOI]
  • 40. Kannan RP, Hensley LL, Evers LE, Lemon SM, McGivern DR. Hepatitis C Virus Infection Causes Cell Cycle Arrest at the Level of Initiation of Mitosis. J Virol. 2011; 85(16): 7989-8001[DOI]
  • 41. Kasai H, Nakashima K, Yokota M, Nishihara T. The G1 cell cycle arrest of macrophages infected withAggregatibacter actinomycetemcomitans. Oral Dis. 2010; 16(3): 305-9[DOI]
  • 42. Coelho C, Tesfa L, Zhang J, Rivera J, Goncalves T, Casadevall A. Analysis of Cell Cycle and Replication of Mouse Macrophages after In Vivo and In Vitro Cryptococcus neoformans Infection Using Laser Scanning Cytometry. Infect Immu. 2012; 80(4): 1467-78[DOI]
  • 43. Tran G, Nhieu V, Arbibe L. Genetic reprogramming of host cells by bacterial pathogens. F1000 Biol Rep. 2009; 1[DOI]
  • 44. Kim M, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Sasakawa C. Bacterial Interactions with the Host Epithelium. Cell Host Microbe. 2010; 8(1): 20-35[DOI]
  • 45. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1): 27-30[PubMed]
  • 46. Sanchez V, Dong JJ. Alteration of lipid metabolism in cells infected with human cytomegalovirus. Virology. 2010; 404(1): 71-7[DOI][PubMed]
  • 47. Wen C, He X, Ma H, Hou N, Wei C, Song T, et al. Hepatitis C virus infection downregulates the ligands of the activating receptor NKG2D. Cell Mol Immunol. 2008; 5(6): 475-8[DOI][PubMed]
  • 48. Li H, Zhu W, Zhang L, Lei H, Wu X, Guo L, et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci Rep. 2015; 5: 8421[DOI][PubMed]
  • 49. Howard AA, Floris-Moore M, Arnsten JH, Santoro N, Fleischer N, Lo Y, et al. Disorders of glucose metabolism among HIV-infected women. Clin Infect Dis. 2005; 40(10): 1492-9[DOI][PubMed]
  • 50. Larson R, Capili B, Eckert-Norton M, Colagreco JP, Anastasi JK. Disorders of glucose metabolism in the context of human immunodeficiency virus infection. J Am Acad Nurse Pract. 2006; 18(3): 92-103[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments