Jundishapur Journal of Microbiology

Published by: Kowsar

Studies on Drug Resistance among Klebsiella and Citrobacter spp Isolated from two Human Groups and Wild Animals

Emmanuel Aniebonam Eze 1 , 2 , Kolawole Jamiu Mustapha 1 , Ifeanyi Amara Ndubuisi 1 , * , Uchechukwu Nwodo 2 , 3 and Anthony Okoh 2 , 3
Authors Information
1 Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
2 Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag 1314, Alice, 5700 Eastern Cape, South Africa
3 SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
Article information
  • Jundishapur Journal of Microbiology: January 2018, 11 (1); e58784
  • Published Online: November 29, 2017
  • Article Type: Research Article
  • Received: August 25, 2017
  • Accepted: October 25, 2017
  • DOI: 10.5812/jjm.58784

To Cite: Aniebonam Eze E, Jamiu Mustapha K, Amara Ndubuisi I, Nwodo U, Okoh A. Studies on Drug Resistance among Klebsiella and Citrobacter spp Isolated from two Human Groups and Wild Animals, Jundishapur J Microbiol. 2018 ; 11(1):e58784. doi: 10.5812/jjm.58784.

Copyright © 2017, Jundishapur Journal of Microbiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
6. Conclusion
  • 1. Schechner V, Temkin E, Harbarth S, Carmeli Y, Schwaber MJ. Epidemiological interpretation of studies examining the effect of antibiotic usage on resistance. Clin Microbiol Rev. 2013;26(2):289-307. doi: 10.1128/CMR.00001-13. [PubMed: 23554418].
  • 2. Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nature. 2017;543(7643):15. doi: 10.1038/nature.2017.21550. [PubMed: 28252092].
  • 3. Afema JA, Byarugaba DK, Shah DH, Atukwase E, Nambi M, Sischo WM. Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda. PLoS One. 2016;11(3). e0152130. doi: 10.1371/journal.pone.0152130. [PubMed: 26999788].
  • 4. Castillo-Tokumori F, Irey-Salgado C, Malaga G. Worrisome high frequency of extended-spectrum beta-lactamase-producing Escherichia coli in community-acquired urinary tract infections: a case-control study. Int J Infect Dis. 2017;55:16-9. doi: 10.1016/j.ijid.2016.12.007. [PubMed: 27979787].
  • 5. Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557-84. [PubMed: 8665470].
  • 6. Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA. Antibiotic resistance found in wild rodents. Nature. 1999;401(6750):233-4. doi: 10.1038/45724. [PubMed: 10499578].
  • 7. Souza V, Rocha M, Valera A, Eguiarte LE. Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl Environ Microbiol. 1999;65(8):3373-85. [PubMed: 10427022].
  • 8. Donato JJ, Moe LA, Converse BJ, Smart KD, Berklein FC, McManus PS, et al. Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Appl Environ Microbiol. 2010;76(13):4396-401. doi: 10.1128/AEM.01763-09. [PubMed: 20453147].
  • 9. Pearce-Duvet JM. The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease. Biol Rev Camb Philos Soc. 2006;81(3):369-82. doi: 10.1017/S1464793106007020. [PubMed: 16672105].
  • 10. American Society of Microbiology. Manual for General Bacteriology. 1981. Available from: http://ourfood.com/general-_bacteriology.html.
  • 11. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Analysis. 2016;6(2):71-9. doi: 10.1016/j.jpha.2015.11.005.
  • 12. Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981;145(3):1365-73. [PubMed: 7009583].
  • 13. Akter S, Rafiq-Un N, Rupa FA, Bari MDL, Hossain MAC. Antibiotic resistance and plasmid profiles in bacteria isolated from market-fresh vegetables. Agric Food Anal Bacteriol. 2011;1(2):140-9.
  • 14. Akinyemi KO, Oyefolu AOB, Salu OB, Adewale OA, Fasure AK. Bacterial Pathogens Associated with Tap and Well Waters in Lagos, Nigeria. East Central Afr J Surg. 2006;11(1):110-7.
  • 15. Akinyemi AA, Ajisafe MO. Occurrence of bacteria in the buccal cavity, gill and skin of Chrysichthys nigrodigitatus, Sardinella maderensis, and Mugil cephalus from Lagos lagoon Nigeria. Int. J. Biol. Chem. Sci. 2011 4;5(2):471-8.
  • 16. Eze EA. Systematic variations in drug resistance among some enteric gram-negative bacilli isolated from humans and sewage. J Microbiol Antimicrob. 2012;4(1):6-15. doi: 10.5897/JMA11.031.
  • 17. Reuben CR, Gyar SD, Ashefo D, Tanimu H. Antimicrobial Resistance of Enterobacteria to Some Commonly used Antibiotics in General Hospital Akwanga, Nasarawa State, Nigeria. Int J Sci Res. 2013;2(2):227-81.
  • 18. Iroha IR, Adikwu MU, Esimone CO, Aibinu I, Amadi ES. Extended spectrum beta lactamase (ESBL) in E. coli isolated from a tertiary hospital in Enugu State, Nigeria. Pak J Med Sci. 2009;25(2):279-82.
  • 19. Aibinu I, Aednipekun E, Odugbemi T. Emergence of Quinolone Resistance amongst Escherichia coli strains isolated from Clinical infections in some Lagos State Hospitals, in Nigeria. Nigerian J Health Biomed Sci. 2004;3(2):73-8.
  • 20. Avgustin J. Animal production systems as a selective environment for antibiotic resistance genes. Acta Agriculturae Slovenica. 2012;1(1):7-17.
  • 21. Ny S, Lofmark S, Borjesson S, Englund S, Ringman M, Bergstrom J, et al. Community carriage of ESBL-producing Escherichia coli is associated with strains of low pathogenicity: a Swedish nationwide study. J Antimicrob Chemother. 2017;72(2):582-8. doi: 10.1093/jac/dkw419. [PubMed: 27798205].
  • 22. Rose JM, Gast RJ, Bogomolni A, Ellis JC, Lentell BJ, Touhey K, et al. Occurrence and patterns of antibiotic resistance in vertebrates off the Northeastern United States coast. FEMS Microbiol Ecol. 2009;67(3):421-31. doi: 10.1111/j.1574-6941.2009.00648.x. [PubMed: 19187217].
  • 23. Levy SB. Antimicrobial Resistance in Developing Countries. In: Sosa AJ, Byarugaba DK, Amabile-Cuevas CF, Hsueh P, Kariuki S, Okeke IN, editors. London: Springer; 2010. Preface.
  • 24. Malik S, Coombs GW, O'Brien FG, Peng H, Barton MD. Molecular typing of methicillin-resistant staphylococci isolated from cats and dogs. J Antimicrob Chemother. 2006;58(2):428-31. doi: 10.1093/jac/dkl253. [PubMed: 16782740].
  • 25. Iweriebor BC, Gaqavu S, Obi LC, Nwodo UU, Okoh AI. Antibiotic susceptibilities of enterococcus species isolated from hospital and domestic wastewater effluents in alice, eastern cape province of South Africa. Int J Environ Res Public Health. 2015;12(4):4231-46. doi: 10.3390/ijerph120404231. [PubMed: 25893999].
  • 26. Blaak H, Lynch G, Italiaander R, Hamidjaja RA, Schets FM, de Roda Husman AM. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater. PLoS One. 2015;10(6). e0127752. doi: 10.1371/journal.pone.0127752. [PubMed: 26030904].
  • 27. Usui M, Tagaki C, Fukuda A, Okubo T, Boonla C, Suzuki S, et al. Use of Aeromonas spp. as General Indicators of Antimicrobial Susceptibility among Bacteria in Aquatic Environments in Thailand. Front Microbiol. 2016;7:710. doi: 10.3389/fmicb.2016.00710. [PubMed: 27433156].
  • 28. Wyrsch ER, Roy Chowdhury P, Chapman TA, Charles IG, Hammond JM, Djordjevic SP. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis. Front Microbiol. 2016;7:843. doi: 10.3389/fmicb.2016.00843. [PubMed: 27379026].
  • 29. Akinyemi KO, Bamiro BS, Coker AO. Salmonellosis in Lagos, Nigeria: incidence of Plasmodium falciparum-associated co-infection, patterns of antimicrobial resistance, and emergence of reduced susceptibility to fluoroquinolones. J Health Popul Nutr. 2007;25(3):351-8. [PubMed: 18330069].
  • 30. Byarugaba DK. Antimicrobial Resistance in Developing Countries. In: Sosa AJ, Byarugba DK, Amabile C, Hsueh PR, Karuiki S, Okeke IN, editors. USA: Springer Science and Business Media; 2010. Mechanisms of Antimicrobial Resistance; p. 15-26.
  • 31. da Costa PM, Loureiro L, Matos AJ. Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. Int J Environ Res Public Health. 2013;10(1):278-94. doi: 10.3390/ijerph10010278. [PubMed: 23343983].
  • 32. Mach PA, Grimes DJ. R-plasmid transfer in a wastewater treatment plant. Appl Environ Microbiol. 1982;44(6):1395-403. [PubMed: 6760813].
  • 33. da Costa PM, Vaz-Pires P, Bernardo F. Antimicrobial resistance in Escherichia coli isolated in wastewater and sludge from poultry slaughterhouse wastewater plants. J Environ Health. 2008;70(7):40-5-53. [PubMed: 18348391].
  • 34. Sjolund M, Bonnedahl J, Hernandez J, Bengtsson S, Cederbrant G, Pinhassi J, et al. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis. 2008;14(1):70-2. doi: 10.3201/eid1401.070704. [PubMed: 18258081].
  • 35. Dillon JA, Yeung KH. Beta-lactamase plasmids and chromosomally mediated antibiotic resistance in pathogenic Neisseria species. Clin Microbiol Rev. 1989;2 Suppl:S125-33. [PubMed: 2655882].
  • 36. Fortin C, Marquis C, Nester EW, Dion P. Dynamic structure of Agrobacterium tumefaciens Ti plasmids. J Bacteriol. 1993;175(15):4790-9. [PubMed: 8335635].
  • 37. Stobberingh E, van den Bogaard A, London N, Driessen C, Top J, Willems R. Enterococci with glycopeptide resistance in turkeys, turkey farmers, turkey slaughterers, and (sub)urban residents in the south of The Netherlands: evidence for transmission of vancomycin resistance from animals to humans?. Antimicrob Agents Chemother. 1999;43(9):2215-21. [PubMed: 10471567].
  • 38. Sharif FA, Astal ZY. Role of plasmids in mediating antibiotic resistance and extended–spectrum beta–lactamase production in escherichia coli. IUG J Nat Stud. 2015;12(2).
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments