Jundishapur Journal of Microbiology

Published by: Kowsar

The Effect of Ubiquitin Like Protein-Proteasome System on the Drug Resistance of Isoniazid Mono-Resistant Mycobacterium tuberculosis

Shuai Zhang 1 , Shun Wen Zhang 2 , Jiang Dong Wu 1 , Jie Zhang 3 , Jiang Tao Dong 3 , Hui Yun Zhu 1 , Fang Wu 1 and Wan Jiang Zhang 1 , *
Authors Information
1 Pathophysiology Department, Shihezi University, Shihezi, China
2 Clinical Medicine Department, Nanjing Medical University, Nanjing, China
3 Clinical Medicine Department, Shihezi University, Shihezi, China
Article information
  • Jundishapur Journal of Microbiology: February 2018, 11 (2); e58591
  • Published Online: February 7, 2018
  • Article Type: Research Article
  • Received: March 10, 2017
  • Revised: July 27, 2017
  • Accepted: August 20, 2017
  • DOI: 10.5812/jjm.58591

To Cite: Zhang S, Wen Zhang S, Dong Wu J, Zhang J, Tao Dong J, et al. The Effect of Ubiquitin Like Protein-Proteasome System on the Drug Resistance of Isoniazid Mono-Resistant Mycobacterium tuberculosis, Jundishapur J Microbiol. 2018 ; 11(2):e58591. doi: 10.5812/jjm.58591.

Abstract
Copyright © 2017, Jundishapur Journal of Microbiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
6. Conclusions
Acknowledgements
Footnotes
References
  • 1. Hafner R, Cohn JA, Wright DJ, Dunlap NE, Egorin MJ, Enama ME, et al. Early bactericidal activity of isoniazid in pulmonary tuberculosis. Optimization of methodology. The DATRI 008 Study Group. Am J Respir Crit Care Med. 1997;156(3 Pt 1):918-23. doi: 10.1164/ajrccm.156.3.9612016. [PubMed: 9310014].
  • 2. Yuen CM, Tolman AW, Cohen T, Parr JB, Keshavjee S, Becerra MC. Isoniazid-resistant tuberculosis in children: a systematic review. Pediatr Infect Dis J. 2013;32(5):217-26. doi: 10.1097/INF.0b013e3182865409. [PubMed: 23348808].
  • 3. Yuen CM, Jenkins HE, Rodriguez CA, Keshavjee S, Becerra MC. Global and Regional Burden of Isoniazid-Resistant Tuberculosis. Pediatrics. 2015;136(1):50-9. doi: 10.1542/peds.2015-0172. [PubMed: 26034243].
  • 4. Rodwell TC, Valafar F, Douglas J, Qian L, Garfein RS, Chawla A, et al. Predicting extensively drug-resistant Mycobacterium tuberculosis phenotypes with genetic mutations. J Clin Microbiol. 2014;52(3):781-9. doi: 10.1128/JCM.02701-13. [PubMed: 24353002].
  • 5. Wei CJ, Lei B, Musser JM, Tu SC. Isoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase (KatG) mutants evident in InhA inhibitor production. Antimicrob Agents Chemother. 2003;47(2):670-5. [PubMed: 12543676].
  • 6. Siqueira HR, Freitas FA, Oliveira DN, Barreto AM, Dalcolmo MP, Albano RM. Isoniazid-resistant mycobacterium tuberculosis strains arising from mutations in two different regions of the katG gene. J Bras Pneumol. 2009;35(8):773-9. doi: 10.1590/S1806-37132009000800009. [PubMed: 19750330].
  • 7. Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science. 2008;322(5904):1104-7. doi: 10.1126/science.1163885. [PubMed: 18832610].
  • 8. Samanovic MI, Li H, Darwin KH. The pup-proteasome system of Mycobacterium tuberculosis. Subcell Biochem. 2013;66:267-95. doi: 10.1007/978-94-007-5940-4_10. [PubMed: 23479444].
  • 9. Elharar Y, Roth Z, Hecht N, Rotkopf R, Khalaila I, Gur E. Posttranslational regulation of coordinated enzyme activities in the Pup-proteasome system. Proc Natl Acad Sci U S A. 2016;113(12):1605-14. doi: 10.1073/pnas.1525185113. [PubMed: 26951665].
  • 10. Festa RA, McAllister F, Pearce MJ, Mintseris J, Burns KE, Gygi SP, et al. Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis [corrected]. PLoS One. 2010;5(1):8589. doi: 10.1371/journal.pone.0008589. [PubMed: 20066036].
  • 11. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. doi: 10.1111/j.1469-0691.2011.03570.x. [PubMed: 21793988].
  • 12. Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I. Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol. 1999;31(2):715-24. [PubMed: 10027986].
  • 13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. doi: 10.1006/meth.2001.1262. [PubMed: 11846609].
  • 14. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol. 1998;36(2):362-6. [PubMed: 9466742].
  • 15. Baysarowich J, Koteva K, Hughes DW, Ejim L, Griffiths E, Zhang K, et al. Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. Proc Natl Acad Sci U S A. 2008;105(12):4886-91. doi: 10.1073/pnas.0711939105. [PubMed: 18349144].
  • 16. Pang Y, Lu J, Wang Y, Song Y, Wang S, Zhao Y. Study of the rifampin monoresistance mechanism in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013;57(2):893-900. doi: 10.1128/AAC.01024-12. [PubMed: 23208715].
  • 17. Cambau E, Viveiros M, Machado D, Raskine L, Ritter C, Tortoli E, et al. Revisiting susceptibility testing in MDR-TB by a standardized quantitative phenotypic assessment in a European multicentre study. J Antimicrob Chemother. 2015;70(3):686-96. doi: 10.1093/jac/dku438. [PubMed: 25587993].
  • 18. Imkamp F, Rosenberger T, Striebel F, Keller PM, Amstutz B, Sander P, et al. Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol Microbiol. 2010;75(3):744-54. doi: 10.1111/j.1365-2958.2009.07013.x. [PubMed: 20025664].
  • 19. Delley CL, Striebel F, Heydenreich FM, Ozcelik D, Weber-Ban E. Activity of the mycobacterial proteasomal ATPase Mpa is reversibly regulated by pupylation. J Biol Chem. 2012;287(11):7907-14. doi: 10.1074/jbc.M111.331124. [PubMed: 22210775].
  • 20. Pearce MJ, Arora P, Festa RA, Butler-Wu SM, Gokhale RS, Darwin KH. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J. 2006;25(22):5423-32. doi: 10.1038/sj.emboj.7601405. [PubMed: 17082771].
  • 21. Chen X, Li C, Wang L, Liu Y, Li C, Zhang J. The Mechanism of Mycobacterium smegmatis PafA Self-Pupylation. PLoS One. 2016;11(3):151021. doi: 10.1371/journal.pone.0151021. [PubMed: 26953889].
  • 22. Darwin KH, Lin G, Chen Z, Li H, Nathan CF. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol Microbiol. 2005;55(2):561-71. doi: 10.1111/j.1365-2958.2004.04403.x. [PubMed: 15659170].
  • 23. Burns KE, Pearce MJ, Darwin KH. Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates. J Bacteriol. 2010;192(11):2933-5. doi: 10.1128/JB.01639-09. [PubMed: 20233925].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments