Jundishapur Journal of Microbiology

Published by: Neoscriber Demo Publisher

Spore Production of Toxigenic and Non-Toxigenic Clostridium difficile Isolates in Sub-MIC of Vancomycin, Clindamycin, and Ceftazidime

Ebrahim Rezazadeh Zarandi 1 , 2 , Shahla Mansouri 3 , Nouzar Nakhaee 4 , Farhad Sarafzadeh 5 and Mohammad Moradi 3 , *
Authors Information
1 Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
2 Department of Microbiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
3 Department of Microbiology and Virology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
4 Department of Community Medicine, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
5 Department of Infectious Diseases, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
Article information
  • Jundishapur Journal of Microbiology: May 31, 2019, 12 (5); e57905
  • Published Online: May 15, 2019
  • Article Type: Research Article
  • Received: July 10, 2017
  • Revised: April 22, 2019
  • Accepted: May 3, 2019
  • DOI: 10.5812/jjm.57905

To Cite: Rezazadeh Zarandi E, Mansouri S, Nakhaee N , Sarafzadeh F, Moradi M. Spore Production of Toxigenic and Non-Toxigenic Clostridium difficile Isolates in Sub-MIC of Vancomycin, Clindamycin, and Ceftazidime, Jundishapur J Microbiol. 2019 ; 12(5):e57905. doi: 10.5812/jjm.57905.

Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Nerandzic MM, Donskey CJ. Activate to eradicate: Inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin. PLoS One. 2013;8(1). e54740. doi: 10.1371/journal.pone.0054740. [PubMed: 23349961]. [PubMed Central: PMC3551897].
  • 2. Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C, et al. Clostridium difficile: New insights into the evolution of the pathogenicity locus. Sci Rep. 2015;5:15023. doi: 10.1038/srep15023. [PubMed: 26446480]. [PubMed Central: PMC4597214].
  • 3. Rupnik M. Heterogeneity of large clostridial toxins: Importance of Clostridium difficile toxinotypes. FEMS Microbiol Rev. 2008;32(3):541-55. doi: 10.1111/j.1574-6976.2008.00110.x. [PubMed: 18397287].
  • 4. Cheng JW, Xiao M, Kudinha T, Kong F, Xu ZP, Sun LY, et al. Molecular epidemiology and antimicrobial susceptibility of clostridium difficile isolates from a University Teaching Hospital in China. Front Microbiol. 2016;7:1621. doi: 10.3389/fmicb.2016.01621. [PubMed: 27799923]. [PubMed Central: PMC5065952].
  • 5. Natarajan M, Walk ST, Young VB, Aronoff DM. A clinical and epidemiological review of non-toxigenic Clostridium difficile. Anaerobe. 2013;22:1-5. doi: 10.1016/j.anaerobe.2013.05.005. [PubMed: 23727391]. [PubMed Central: PMC3729612].
  • 6. Woodcock A, Moradi M, Smillie FI, Murray CS, Burnie JP, Custovic A. Clostridium difficile, atopy and wheeze during the first year of life. Pediatr Allergy Immunol. 2002;13(5):357-60. doi: 10.1034/j.1399-3038.2002.01066.x. [PubMed: 12431195].
  • 7. Janezic S, Ocepek M, Zidaric V, Rupnik M. Clostridium difficile genotypes other than ribotype 078 that are prevalent among human, animal and environmental isolates. BMC Microbiol. 2012;12:48. doi: 10.1186/1471-2180-12-48. [PubMed: 22452857]. [PubMed Central: PMC3353227].
  • 8. Geric B, Rupnik M, Gerding DN, Grabnar M, Johnson S. Distribution of Clostridium difficile variant toxinotypes and strains with binary toxin genes among clinical isolates in an American Hospital. J Med Microbiol. 2004;53(Pt 9):887-94. doi: 10.1099/jmm.0.45610-0. [PubMed: 15314196].
  • 9. Walker AS, Eyre DW, Crook DW, Wilcox MH, Peto TE. Regarding "Clostridium difficile ribotype does not predict severe infection". Clin Infect Dis. 2013;56(12):1845-6. doi: 10.1093/cid/cit098. [PubMed: 23420817]. [PubMed Central: PMC3658362].
  • 10. Shim JK, Johnson S, Samore MH, Bliss DZ, Gerding DN. Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet. 1998;351(9103):633-6. doi: 10.1016/S0140-6736(97)08062-8. [PubMed: 9500319].
  • 11. Collignon A, Ticchi L, Depitre C, Gaudelus J, Delmee M, Corthier G. Heterogeneity of Clostridium difficile isolates from infants. Eur J Pediatr. 1993;152(4):319-22. doi: 10.1007/BF01956743. [PubMed: 8482281].
  • 12. Rousseau C, Lemee L, Le Monnier A, Poilane I, Pons JL, Collignon A. Prevalence and diversity of Clostridium difficile strains in infants. J Med Microbiol. 2011;60(Pt 8):1112-8. doi: 10.1099/jmm.0.029736-0. [PubMed: 21393454].
  • 13. Kato H, Kato N, Watanabe K, Ueno K, Ushijima H, Hashira S, et al. Application of typing by pulsed-field gel electrophoresis to the study of Clostridium difficile in a neonatal intensive care unit. J Clin Microbiol. 1994;32(9):2067-70. [PubMed: 7814526]. [PubMed Central: PMC263943].
  • 14. Martirosian G, Szczesny A, Cohen SH, Silva J Jr. Isolation of non-toxigenic strains of Clostridium difficile from cases of diarrhea among patients hospitalized in hematology/oncology ward. Pol J Microbiol. 2004;53(3):197-200. [PubMed: 15702921].
  • 15. Musher DM, Koo H. Non-toxigenic Clostridium difficile to prevent recurrent C. difficile infection. Evid Based Med. 2016;21(2):67. doi: 10.1136/ebmed-2015-110234. [PubMed: 26763618].
  • 16. Rezazadeh Zarandi E, Mansouri S, Nakhaee N, Sarafzadeh F, Iranmanesh Z, Moradi M. Frequency of antibiotic associated diarrhea caused by Clostridium difficile among hospitalized patients in intensive care unit, Kerman, Iran. Gastroenterol Hepatol Bed Bench. 2017;10(3):229-34. [PubMed: 29118940]. [PubMed Central: PMC5660274].
  • 17. Braun M, Herholz C, Straub R, Choisat B, Frey J, Nicolet J, et al. Detection of the ADP-ribosyltransferase toxin gene (cdtA) and its activity in Clostridium difficile isolates from Equidae. FEMS Microbiol Lett. 2000;184(1):29-33. doi: 10.1111/j.1574-6968.2000.tb08985.x. [PubMed: 10689161].
  • 18. Neff GW, Jones M, Jonas M, Ravinuthala R, Novick D, Kaiser TE, et al. Lack of Clostridium difficile infection in patients treated with rifaximin for hepatic encephalopathy: A retrospective analysis. J Clin Gastroenterol. 2013;47(2):188-92. doi: 10.1097/MCG.0b013e318276be13. [PubMed: 23314671].
  • 19. Altindis M, Usluer S, Ciftci H, Tunc N, Cetinkaya Z, Aktepe OC. [Investigation of the presence of Clostridium difficile in antibiotic associated diarrhea patients by culture and toxin detection methods]. Mikrobiyol Bul. 2007;41(1):29-37. Turkish. [PubMed: 17427550].
  • 20. Goncalves C, Decre D, Barbut F, Burghoffer B, Petit JC. Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile. J Clin Microbiol. 2004;42(5):1933-9. doi: 10.1128/jcm.42.5.1933-1939.2004. [PubMed: 15131151]. [PubMed Central: PMC404597].
  • 21. Zarandi ER, Mansouri S, Nakhaee N, Sarafzadeh F, Moradi M. Toxin production of Clostridium difficile in sub-MIC of vancomycin and clindamycin alone and in combination with ceftazidime. Microb Pathog. 2017;107:249-53. doi: 10.1016/j.micpath.2017.03.002. [PubMed: 28286152].
  • 22. Garneau JR, Valiquette L, Fortier LC. Prevention of Clostridium difficile spore formation by sub-inhibitory concentrations of tigecycline and piperacillin/tazobactam. BMC Infect Dis. 2014;14:29. doi: 10.1186/1471-2334-14-29. [PubMed: 24422950]. [PubMed Central: PMC3897887].
  • 23. Gerber M, Walch C, Loffler B, Tischendorf K, Reischl U, Ackermann G. Effect of sub-MIC concentrations of metronidazole, vancomycin, clindamycin and linezolid on toxin gene transcription and production in Clostridium difficile. J Med Microbiol. 2008;57(Pt 6):776-83. doi: 10.1099/jmm.0.47739-0. [PubMed: 18480337].
  • 24. Goudarzi M, Goudarzi H, Alebouyeh M, Azimi Rad M, Shayegan Mehr FS, Zali MR, et al. Antimicrobial susceptibility of clostridium difficile clinical isolates in Iran. Iran Red Crescent Med J. 2013;15(8):704-11. doi: 10.5812/ircmj.5189. [PubMed: 24578839]. [PubMed Central: PMC3918196].
  • 25. Pirs T, Avbersek J, Zdovc I, Krt B, Andlovic A, Lejko-Zupanc T, et al. Antimicrobial susceptibility of animal and human isolates of Clostridium difficile by broth microdilution. J Med Microbiol. 2013;62(Pt 9):1478-85. doi: 10.1099/jmm.0.058875-0. [PubMed: 23861298].
  • 26. Rodriguez-Palacios A, Lejeune JT. Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Appl Environ Microbiol. 2011;77(9):3085-91. doi: 10.1128/AEM.01589-10. [PubMed: 21398481]. [PubMed Central: PMC3126382].
  • 27. Aldape MJ, Heeney DD, Bryant AE, Stevens DL. Tigecycline suppresses toxin A and B production and sporulation in Clostridium difficile. J Antimicrob Chemother. 2015;70(1):153-9. doi: 10.1093/jac/dku325. [PubMed: 25151204]. [PubMed Central: PMC4267498].
  • 28. Jump RL, Pultz MJ, Donskey CJ. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: A potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Antimicrob Agents Chemother. 2007;51(8):2883-7. doi: 10.1128/AAC.01443-06. [PubMed: 17562803]. [PubMed Central: PMC1932506].
  • 29. Nerandzic MM, Donskey CJ. Effect of ceftobiprole treatment on growth of and toxin production by Clostridium difficile in cecal contents of mice. Antimicrob Agents Chemother. 2011;55(5):2174-7. doi: 10.1128/AAC.01612-10. [PubMed: 21343463]. [PubMed Central: PMC3088227].
  • 30. Brouwer MS, Roberts AP, Hussain H, Williams RJ, Allan E, Mullany P. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat Commun. 2013;4:2601. doi: 10.1038/ncomms3601. [PubMed: 24131955]. [PubMed Central: PMC3826655].
  • 31. Nagaro KJ, Phillips ST, Cheknis AK, Sambol SP, Zukowski WE, Johnson S, et al. Nontoxigenic Clostridium difficile protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027 C. difficile. Antimicrob Agents Chemother. 2013;57(11):5266-70. doi: 10.1128/AAC.00580-13. [PubMed: 23939887]. [PubMed Central: PMC3811292].
  • 32. Barbanti F, Spigaglia P. Characterization of Clostridium difficile PCR-ribotype 018: A problematic emerging type. Anaerobe. 2016;42:123-9. doi: 10.1016/j.anaerobe.2016.10.003. [PubMed: 27725230].
  • 33. Zidaric V, Rupnik M. Sporulation properties and antimicrobial susceptibility in endemic and rare Clostridium difficile PCR ribotypes. Anaerobe. 2016;39:183-8. doi: 10.1016/j.anaerobe.2016.04.010. [PubMed: 27095618].
  • 34. Durre P. Physiology and sporulation in Clostridium. Microbiol Spectr. 2014;2(4):TBS-10-2012. doi: 10.1128/microbiolspec.TBS-0010-2012. [PubMed: 26104199].
  • 35. Carlson PE Jr, Kaiser AM, McColm SA, Bauer JM, Young VB, Aronoff DM, et al. Variation in germination of Clostridium difficile clinical isolates correlates to disease severity. Anaerobe. 2015;33:64-70. doi: 10.1016/j.anaerobe.2015.02.003. [PubMed: 25681667]. [PubMed Central: PMC4467518].
  • 36. Ciricillo J, Haslam D, Blum S, Kim MO, Liu C, Paulsen G, et al. Frequency and risks associated with Clostridium difficile-associated diarrhea after pediatric solid organ transplantation: A single-center retrospective review. Transpl Infect Dis. 2016;18(5):706-13. doi: 10.1111/tid.12584. [PubMed: 27492796].
  • 37. Babakhani F, Bouillaut L, Gomez A, Sears P, Nguyen L, Sonenshein AL. Fidaxomicin inhibits spore production in Clostridium difficile. Clin Infect Dis. 2012;55 Suppl 2:S162-9. doi: 10.1093/cid/cis453. [PubMed: 22752866]. [PubMed Central: PMC3388029].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments