Jundishapur Journal of Microbiology

Published by: Kowsar

The Effects of Sugars on the Biofilm Formation of Escherichia coli 185p on Stainless Steel and Polyethylene Terephthalate Surfaces in a Laboratory Model

Mahdi Khangholi 1 and Ailar Jamalli 2 , *
Authors Information
1 Golestan University of Medical Sciences, Gorgan, IR Iran
2 Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, IR Iran
Article information
  • Jundishapur Journal of Microbiology: September 01, 2016, 9 (9); e40137
  • Published Online: August 27, 2016
  • Article Type: Research Article
  • Received: June 19, 2016
  • Revised: August 13, 2016
  • Accepted: August 21, 2016
  • DOI: 10.5812/jjm.40137

To Cite: Khangholi M, Jamalli A. The Effects of Sugars on the Biofilm Formation of Escherichia coli 185p on Stainless Steel and Polyethylene Terephthalate Surfaces in a Laboratory Model, Jundishapur J Microbiol. 2016 ; 9(9):e40137. doi: 10.5812/jjm.40137.

Abstract
Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Footnotes
References
  • 1. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995; 49: 711-45[DOI][PubMed]
  • 2. Mattila‐Sandholm T, Wirtanen G. Biofilm formation in the industry: a review. Food Rev Int. 1992; 8(4): 573-603[DOI]
  • 3. Chmielewski R, Frank JF. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2003; 2(1): 22-32[DOI]
  • 4. McLean RJ, Nickel JC, Olson ME. Biofilm Associated Urinary Tract. Microbial Biofilms. 2003; 5: 261
  • 5. Oliveira DR. Physico-chemical aspects of adhesion. Biofilms - Science and Technology. 1992; : 45-58
  • 6. Cunliffe D, Smart CA, Alexander C, Vulfson EN. Bacterial adhesion at synthetic surfaces. Appl Environ Microbiol. 1999; 65(11): 4995-5002[PubMed]
  • 7. Bellon-Fontaine MN, Rault J, Van Oss CJ. Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf B Biointerfaces. 1996; 7(1): 47-53
  • 8. Habimana O, Semiao A, Casey E. The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. J Membr Sci. 2014; 454: 82-96
  • 9. Hori K, Matsumoto S. Bacterial adhesion: from mechanism to control. Biochem Eng J. 2010; 48(3): 424-34
  • 10. Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004; 8: 37-57[PubMed]
  • 11. Characklis W. Biofilm development: A process analysis. Microbial Adhesion and Aggregation. 2012; : 137-58
  • 12. Giovannacci I, Ermel G, Salvat G, Vendeuvre JL, Bellon-Fontaine MN. Physicochemical surface properties of five Listeria monocytogenes strains from a pork-processing environment in relation to serotypes, genotypes and growth temperature. J Appl Microbiol. 2000; 88(6): 992-1000[PubMed]
  • 13. Jackson DW, Simecka JW, Romeo T. Catabolite repression of Escherichia coli biofilm formation. J Bacteriol. 2002; 184(12): 3406-10[PubMed]
  • 14. Yang Y, Sreenivasan PK, Subramanyam R, Cummins D. Multiparameter assessments to determine the effects of sugars and antimicrobials on a polymicrobial oral biofilm. Appl Environ Microbiol. 2006; 72(10): 6734-42[DOI][PubMed]
  • 15. Michu E, Cervinkova D, Babak V, Kyrova K, Jaglic Z. Biofilm formation on stainless steel by Staphylococcus epidermidis in milk and influence of glucose and sodium chloride on the development of ica-mediated biofilms. Int Dairy J. 2011; 21(3): 179-84
  • 16. Xu H, Zou Y, Lee HY, Ahn J. Effect of NaCl on the biofilm formation by foodborne pathogens. J Food Sci. 2010; 75(9)-5[DOI][PubMed]
  • 17. Di Bonaventura G, Piccolomini R, Paludi D, D'Orio V, Vergara A, Conter M, et al. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol. 2008; 104(6): 1552-61[DOI][PubMed]
  • 18. Giaouris E, Chorianopoulos N, Nychas GJ. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J Food Prot. 2005; 68(10): 2149-54[PubMed]
  • 19. Pan Y, Breidt FJ, Gorski L. Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes serotype 1/2a and 4b strains. Appl Environ Microbiol. 2010; 76(5): 1433-41[DOI][PubMed]
  • 20. Chai Y, Beauregard PB, Vlamakis H, Losick R, Kolter R. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. MBio. 2012; 3(4): 184-12[DOI][PubMed]
  • 21. Jana TK, Srivastava AK, Csery K, Arora DK. Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Can J Microbiol. 2000; 46(1): 28-37[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments