Jundishapur Journal of Microbiology

Published by: Kowsar

Prevalence of Oxacillinase Groups I, II and III in Pseudomonas aeruginosa Isolates by Polymerase Chain Reaction and Genotyping by ERIC-PCR Methods

Mohammad Aghazadeh 1 , 2 , Hossein Samadi Kafil 3 , Reza Ghotaslou 2 , Mohammad Asgharzadeh 3 , Maryam Moghadami 2 , Mohammad Taghi Akhi 3 , Zoya Hojabri 4 , Behrouz Naghili 1 , Khadijeh Najafi 3 , Somayeh Azimi 1 and Saeed Shokrian 1 , 5 , *
Authors Information
1 Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
2 Department of Knowledge and Information Science, Tarbiat Modares University, Tehran, IR Iran
3 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4 Department of Microbiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
5 Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, IR Iran
Article information
  • Jundishapur Journal of Microbiology: December 01, 2016, 9 (12); e38129
  • Published Online: October 26, 2016
  • Article Type: Research Article
  • Received: April 1, 2016
  • Revised: September 24, 2016
  • Accepted: October 16, 2016
  • DOI: 10.5812/jjm.38129

To Cite: Aghazadeh M, Samadi Kafil H, Ghotaslou R, Asgharzadeh M, Moghadami M, et al. Prevalence of Oxacillinase Groups I, II and III in Pseudomonas aeruginosa Isolates by Polymerase Chain Reaction and Genotyping by ERIC-PCR Methods, Jundishapur J Microbiol. 2016 ; 9(12):e38129. doi: 10.5812/jjm.38129.

Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Lin SP, Liu MF, Lin CF, Shi ZY. Phenotypic detection and polymerase chain reaction screening of extended-spectrum beta-lactamases produced by Pseudomonas aeruginosa isolates. J Microbiol Immunol Infect. 2012; 45(3): 200-7[DOI][PubMed]
  • 2. Hocquet D, Plesiat P, Dehecq B, Mariotte P, Talon D, Bertrand X, et al. Nationwide investigation of extended-spectrum beta-lactamases, metallo-beta-lactamases, and extended-spectrum oxacillinases produced by ceftazidime-resistant Pseudomonas aeruginosa strains in France. Antimicrob Agents Chemother. 2010; 54(8): 3512-5[DOI][PubMed]
  • 3. Liu W, Liu X, Liao J, Zhang Y, Liang X. Identification of blaOXA-128 and blaOXA-129, two novel OXA-type extended-spectrum-beta-lactamases in Pseudomonas aeruginosa, in Hunan Province, China. J Basic Microbiol. 2010; 50 Suppl 1: 116-9[DOI][PubMed]
  • 4. Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother. 2002; 50(1): 11-8[PubMed]
  • 5. Mirsalehian A, Feizabadi M, Nakhjavani FA, Jabalameli F, Goli H, Kalantari N. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns. 2010; 36(1): 70-4[DOI][PubMed]
  • 6. Shacheraghi F, Shakibaie MR, Noveiri H. Molecular Identification of ESBL genes blaGES-1, blaVEB-1, blaCTX-M blaOXA-1, blaOXA-4, blaOXA-10 and blaPER-1 in Pseudomonas aeruginosa strains isolated from burn patients by PCR, RFLP and sequencing techniques. Int J Biol, Biomolecul, Agri, Food Biotechnol Engine. 2010; 4(1): 114-8
  • 7. de Bruijn FJ. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992; 58(7): 2180-7[PubMed]
  • 8. Tavajjohi Z, Moniri R, Khorshidi A. Detection and characterization of multidrug resistance and extended-spectrum-beta-lactamase-producing (ESBLS) Pseudomonas aeruginosa isolates in teaching hospital. Afr J Microbiol Res. 2011; 5(20): 3223-8[DOI]
  • 9. Syrmis MW, O'Carroll MR, Sloots TP, Coulter C, Wainwright CE, Bell SC, et al. Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. J Med Microbiol. 2004; 53: 1089-96[DOI][PubMed]
  • 10. Mahon CR, Lehman DC, Manuselis G. Textbook of diagnostic microbiology. 2014;
  • 11. Wayne P. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing 2011;
  • 12. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18(3): 268-81[DOI][PubMed]
  • 13. Asgharzadeh M, Kafil HS, Khakpour M. Comparison of mycobacterial interspersed repetitive unit-variable number tandem repeat and IS6110-RFLP methods in identifying epidemiological links in patients with tuberculosis in Northwest of Iran. Annal microbiol. 2008; 58(2): 333-9[DOI]
  • 14. Asgharzadeh M, Kafil HS, Ebrahimzadeh ME. Mannose-Binding Lectin Gene and Promoter Polymorphism and Susceptibility to Renal Dysfunction in Systemic Lupus Erythematosus. J Biol Sci. 2007; 7(5): 801-5[DOI]
  • 15. Kosmidis C, Poulakou G, Markogiannakis A, Daikos GL. Treatment options for infections caused by carbapenem-resistant Gram-negative bacteria. Eur Infect Dis. 2012; 6(1): 28-34
  • 16. Meletis G, Bagkeri M. Pseudomonas aeruginosa: Multi-Drug-Resistance Development and Treatment Options 2013;
  • 17. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991; 19(24): 6823-31[PubMed]
  • 18. Vitkauskiene A, Skrodeniene E, Dambrauskiene A, Macas A, Sakalauskas R. Pseudomonas aeruginosa bacteremia: resistance to antibiotics, risk factors, and patient mortality. Medicina (Kaunas). 2010; 46(7): 490-5[PubMed]
  • 19. Pier GB. Pseudomonas aeruginosa: a key problem in cystic fibrosis. ASM News-Am Soc Microbiol. 1998; 64(6): 339-47
  • 20. Nakajima A, Sugimoto Y, Yoneyama H, Nakae T. High-level fluoroquinolone resistance in Pseudomonas aeruginosa due to interplay of the MexAB-OprM efflux pump and the DNA gyrase mutation. Microbiol Immunol. 2002; 46(6): 391-5[PubMed]
  • 21. Bayani M, Siadati S, Rajabnia R, Taher AA. Drug Resistance of Pseudomonas aeruginosa and Enterobacter cloacae Isolated from ICU, Babol, Northern Iran. Int J Mol Cell Med. 2013; 2(4): 204-9[PubMed]
  • 22. Saderi H, Owlia P. Detection of Multidrug Resistant (MDR) and Extremely Drug Resistant (XDR) P. Aeruginosa Isolated from Patients in Tehran, Iran. Iran J Pathol. 2015; 10(4): 265-71[PubMed]
  • 23. Moazami-Goudarzi S, Eftekhar F. Assessment of carbapenem susceptibility and multidrug-resistance in Pseudomonas aeruginosa burn isolates in Tehran. Jundishapur J Microbiol. 2013; 6(2): 162-5[DOI]
  • 24. Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005; 40(9): 1333-41[DOI][PubMed]
  • 25. Bialvaei AZ, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin. 2015; 31(4): 707-21[DOI][PubMed]
  • 26. D'Souza BB, Padmaraj SR, Rekha PD, Tellis RC, Prabhu S, Pothen P. In vitro synergistic activity of colistin and ceftazidime or ciprofloxacin against multidrug-resistant clinical strains of Pseudomonas aeruginosa. Microb Drug Resist. 2014; 20(6): 550-4[DOI][PubMed]
  • 27. Sorour AE, Wali IE, El-Hodaky SK. OXA-Type-Beta-Lactamases among Extended-Spectrum-Cephalosporin Non-Susceptible Pseudomonas aeruginosa Isolates Collected from a Large Teaching Hospital in Cairo. Egyptian J Med Microbiol. 2008; 17(4): 565-72
  • 28. Aktas Z, Poirel L, Salcioglu M, Ozcan PE, Midilli K, Bal C, et al. PER-1- and OXA-10-like beta-lactamases in ceftazidime-resistant Pseudomonas aeruginosa isolates from intensive care unit patients in Istanbul, Turkey. Clin Microbiol Infect. 2005; 11(3): 193-8[DOI][PubMed]
  • 29. Tawfik AF, Shibl AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D beta-lactamases among Pseudomonas aeruginosa isolates. Burns. 2012; 38(6): 855-60[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments