Jundishapur Journal of Microbiology

Published by: Kowsar

Enhancing the Anti-Enterococci Activity of Different Antibiotics by Combining With Metal Oxide Nanoparticles

Saira Iram 1 , 2 , * , Jawad Akbar Khan 3 , Nargis Aman 3 , Akhtar Nadhman 4 , Zikra Zulfiqar 5 and Muhammad Arfat Yameen 3
Authors Information
1 Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
2 Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, USA
3 Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
4 Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
5 Riphah Institute of Pharmaceutical Sciences G-7/4, Islamabad, Pakistan
Article information
  • Jundishapur Journal of Microbiology: March 01, 2016, 9 (3); e31302
  • Published Online: March 12, 2016
  • Article Type: Research Article
  • Received: July 6, 2015
  • Revised: December 21, 2015
  • Accepted: December 23, 2015
  • DOI: 10.5812/jjm.31302

To Cite: Iram S, Akbar Khan J, Aman N, Nadhman A, Zulfiqar Z, et al. Enhancing the Anti-Enterococci Activity of Different Antibiotics by Combining With Metal Oxide Nanoparticles, Jundishapur J Microbiol. 2016 ; 9(3):e31302. doi: 10.5812/jjm.31302.

Abstract
Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Desselberger U. Emerging and re-emerging infectious diseases. J Infect. 2000; 40(1): 3-15[DOI][PubMed]
  • 2. Yameen MA, Iram S, Mannan A, Khan SA, Akhtar N. Nasal and perirectal colonization of vancomycin sensitive and resistant enterococci in patients of paediatrics ICU (PICU) of tertiary health care facilities. BMC Infect Dis. 2013; 13: 156[DOI][PubMed]
  • 3. Gilmore MS, Clewell DB, Courvalin PM, Dunny GM, Murray BE, Rice LB. The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. 2002;
  • 4. Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 1990; 3(1): 46-65[PubMed]
  • 5. Low DE, Keller N, Barth A, Jones RN. Clinical prevalence, antimicrobial susceptibility, and geographic resistance patterns of enterococci: results from the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis. 2001; 32 Suppl 2-45[DOI][PubMed]
  • 6. Lukasova J, Sustackova A. Enterococci and Antibiotic Resistance. Acta Veterinaria Brno. 2003; 72(2): 315-23[DOI]
  • 7. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis. 2000; 37(2): 127-37[PubMed]
  • 8. Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012; 10(4): 266-78[DOI][PubMed]
  • 9. Kacmaz B, Aksoy A. Antimicrobial resistance of enterococci in Turkey. Int J Antimicrob Agents. 2005; 25(6): 535-8[DOI][PubMed]
  • 10. Rice LB. Emergence of vancomycin-resistant enterococci. Emerg Infect Dis. 2001; 7(2): 183-7[DOI][PubMed]
  • 11. Shepard BD, Gilmore MS. Antibiotic-resistant enterococci: the mechanisms and dynamics of drug introduction and resistance. Microbes Infect. 2002; 4(2): 215-24[PubMed]
  • 12. Arooj S, Nazir S, Nadhman A, Ahmad N, Muhammad B, Ahmad I, et al. Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells. Beilstein J Nanotechnol. 2015; 6: 570-82[DOI][PubMed]
  • 13. Nadhman A, Nazir S, Khan MI, Arooj S, Bakhtiar M, Shahnaz G, et al. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radic Biol Med. 2014; 77: 230-8[DOI][PubMed]
  • 14. Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003; 54(2): 177-82[PubMed]
  • 15. Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect. 2006; 62(1): 58-63[DOI][PubMed]
  • 16. Axtell H, Hartley S, Sallavanti R. Multifunctional protective fiber and methods for use 2005;
  • 17. Schumacher K, Hasenzahl S, Morters M. Powder mixture consisting of titanium dioxide, zinc oxide and zinc/titanium oxide 2005;
  • 18. Iram S, Nadhman A, Akhtar N, Hameed A, Zulfiqar Z, Yameen MA. Potentiating efficacy of antibiotic conjugates with zinc oxide nanoparticles against clinical isolates of Staphylococcus aureus. Dig J Nanomater Biostructure. 2015; 10(3): 901-14
  • 19. Li P, Li J, Wu C, Wu Q, Li J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology. 2005; 16(9): 1912-7[DOI]
  • 20. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007; 3(2): 168-71[DOI][PubMed]
  • 21. Naqvi SZ, Kiran U, Ali MI, Jamal A, Hameed A, Ahmed S, et al. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomedicine. 2013; 8: 3187-95[DOI][PubMed]
  • 22. Kora AJ, Rastogi L. Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg Chem Appl. 2013; 2013: 871097[DOI][PubMed]
  • 23. Dar MA, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine. 2013; 9(1): 105-10[DOI][PubMed]
  • 24. Kariyama R, Mitsuhata R, Chow JW, Clewell DB, Kumon H. Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci. J Clin Microbiol. 2000; 38(8): 3092-5[PubMed]
  • 25. Karmarkar MG, Gershom ES, Mehta PR. Enterococcal infections with special reference to phenotypic characterization & drug resistance. Indian J Med Res. 2004; 119 Suppl: 22-5[PubMed]
  • 26. Cotter G, Adley CC. Ciprofloxacin susceptibility testing of enterococcal urinary isolates in accordance with BSAC guidelines. J Antimicrob Chemother. 2001; 48(2): 324-5[PubMed]
  • 27. Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008; 279(1): 71-6[DOI][PubMed]
  • 28. Kowalska-Krochmal B, Dworniczek E, Dolna I, Seniuk A, Bania J, Walecka E, et al. Antibiotic susceptibility levels of clinical Enterococcus spp. Strains, including those resistant to glycopeptides and high concentrations of aminoglycosides. Adv Clin Exp Med. 2010; 19: 155-62
  • 29. Aleyasin A, Mobarez AM, Sadeghizadeh M, Hosseini Doust R, Khoramabadi N. Resistance to vancomycin in Enterococcus faecium and faecalis clinical isolates. Pakistan J Med Sci. 2007; 23(3): 390-3
  • 30. Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012; 3(5): 421-33[DOI][PubMed]
  • 31. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A. Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide. Advanced Functional Materials. 2005; 15(10): 1708-15[DOI]
  • 32. You J, Zhang Y, Hu Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf B Biointerfaces. 2011; 85(2): 161-7[DOI][PubMed]
  • 33. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 2016; 9: 1-7[DOI]
  • 34. Rafique S, Idrees M, Nasim A, Akbar H, Athar A. Transition metal complexes as potential therapeutic agents. Biotechnol Mol Biol Rev. 2010; 5(2): 38-45
  • 35. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine. 2012; 7: 483-96[DOI][PubMed]
  • 36. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine. 2010; 6(1): 103-9[DOI][PubMed]
  • 37. Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, et al. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res B Appl Biomater. 2010; 93(2): 557-61[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments