Jundishapur Journal of Microbiology

Published by: Kowsar

Evaluation of Biofilm Formation Among Klebsiella pneumoniae Isolates and Molecular Characterization by ERIC-PCR

Kimia Seifi 1 , Hossein Kazemian 2 , Hamid Heidari 3 , Fereshteh Rezagholizadeh 2 , Yasaman Saee 4 , Fariba Shirvani 1 and Hamidreza Houri 5 , *
Authors Information
1 Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
3 Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
4 Department of Microbiology, Islamic Azad University, Pharmaceutical Branch, Tehran, IR Iran
5 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: January 01, 2016, 9 (1); e30682
  • Published Online: January 2, 2016
  • Article Type: Research Article
  • Received: June 16, 2015
  • Revised: September 16, 2015
  • Accepted: September 29, 2015
  • DOI: 10.5812/jjm.30682

To Cite: Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, et al. Evaluation of Biofilm Formation Among Klebsiella pneumoniae Isolates and Molecular Characterization by ERIC-PCR, Jundishapur J Microbiol. 2016 ; 9(1):e30682. doi: 10.5812/jjm.30682.

Abstract
Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Deretic V, Schurr MJ, Boucher JC, Martin DW. Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol. 1994; 176(10): 2773-80[PubMed]
  • 2. Rayner MG, Zhang Y, Gorry MC, Chen Y, Post JC, Ehrlich GD. Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAMA. 1998; 279(4): 296-9[PubMed]
  • 3. Potera C. Forging a link between biofilms and disease. Science. 1999; 283(5409): 1837[PubMed]
  • 4. Blaser J, Vergeres P, Widmer AF, Zimmerli W. In vivo verification of in vitro model of antibiotic treatment of device-related infection. Antimicrob Agents Chemother. 1995; 39(5): 1134-9[PubMed]
  • 5. Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005; 28(11): 1062-8[PubMed]
  • 6. Ward KH, Olson ME, Lam K, Costerton JW. Mechanism of persistent infection associated with peritoneal implants. J Med Microbiol. 1992; 36(6): 406-13[DOI][PubMed]
  • 7. Edmiston Jr CE, McBain AJ, Roberts C, Leaper D. Clinical and microbiological aspects of biofilm-associated surgical site infections. Adv Exp Med Biol. 2015; 830: 47-67[DOI][PubMed]
  • 8. Ahmed S, Darouiche RO. Anti-biofilm agents in control of device-related infections. Adv Exp Med Biol. 2015; 831: 137-46[DOI][PubMed]
  • 9. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000; 44(7): 1818-24[PubMed]
  • 10. Ghafourian S, Mohebi R, Rezaei M, Raftari M, Sekawi Z, Kazemian H, et al. Comparative analysis of biofilm development among MRSA and MSSA strains. Roum Arch Microbiol Immunol. 2012; 71(4): 175-82[PubMed]
  • 11. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318-22[PubMed]
  • 12. Tai AY, Stuart RL, Sidjabat HE, Lemoh CN, Rogers BA, Graham M, et al. Local acquisition and nosocomial transmission of Klebsiella pneumoniae harbouring the blaNDM-1 gene in Australia. Med J Aust. 2015; 202(5): 270-2[PubMed]
  • 13. Ahmad S, Abulhamd A. Phenotypic and molecular characterization of nosocomial K. pneumoniae isolates by ribotyping. Adv Med Sci. 2015; 60(1): 69-75[DOI][PubMed]
  • 14. Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol. 2014; 9(9): 1071-81[DOI][PubMed]
  • 15. Nitzan O, Elias M, Chazan B, Saliba W. Urinary tract infections in patients with type 2 diabetes mellitus: review of prevalence, diagnosis, and management. Diabetes Metab Syndr Obes. 2015; 8: 129-36[DOI][PubMed]
  • 16. Bennett CJ, Young MN, Darrington H. Differences in urinary tract infections in male and female spinal cord injury patients on intermittent catheterization. Paraplegia. 1995; 33(2): 69-72[DOI][PubMed]
  • 17. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998; 11(4): 589-603[PubMed]
  • 18. Murphy CN, Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol. 2012; 7(8): 991-1002[DOI][PubMed]
  • 19. LeChevallier MW, Cawthon CD, Lee RG. Factors promoting survival of bacteria in chlorinated water supplies. Appl Environ Microbiol. 1988; 54(3): 649-54[PubMed]
  • 20. Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE. Antibiotic Resistance Related to Biofilm Formation in Klebsiella pneumoniae. Pathogens. 2014; 3(3): 743-58[DOI][PubMed]
  • 21. Tille P. Bailey & Scott's diagnostic microbiology. 2013;
  • 22. Mowat E, Butcher J, Lang S, Williams C, Ramage G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol. 2007; 56: 1205-12[DOI][PubMed]
  • 23. Duan H, Chai T, Liu J, Zhang X, Qi C, Gao J, et al. Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environ Res. 2009; 109(5): 511-7[DOI][PubMed]
  • 24. Cartelle M, del Mar Tomas M, Pertega S, Beceiro A, Dominguez MA, Velasco D, et al. Risk factors for colonization and infection in a hospital outbreak caused by a strain of Klebsiella pneumoniae with reduced susceptibility to expanded-spectrum cephalosporins. J Clin Microbiol. 2004; 42(9): 4242-9[DOI][PubMed]
  • 25. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013; (136): 1-51[DOI][PubMed]
  • 26. Borges A, Saavedra MJ, Simoes M. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Curr Med Chem. 2015; 22(21): 2590-614[PubMed]
  • 27. Yang D, Zhang Z. Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended-spectrum beta-lactamases. J Hosp Infect. 2008; 68(4): 369-71[DOI][PubMed]
  • 28. Saeed EA, Bnyan IA, Saadi M. Quorum sensing and Biofilm formation by Bacterial Isolates from Hemodialysis Patients. Res Pharm . 2013; 3(2): 33-40
  • 29. Saxena S, Banerjee G, Garg R, Singh M. Comparative Study of Biofilm Formation in Pseudomonas aeruginosa Isolates from Patients of Lower Respiratory Tract Infection. J Clin Diagn Res. 2014; 8(5)-11[DOI][PubMed]
  • 30. Wu H, Moser C, Wang HZ, Hoiby N, Song ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015; 7(1): 1-7[DOI][PubMed]
  • 31. Cabral AB, Melo Rde C, Maciel MA, Lopes AC. Multidrug resistance genes, including bla(KPC) and bla(CTX)-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop. 2012; 45(5): 572-8[PubMed]
  • 32. Diago-Navarro E, Chen L, Passet V, Burack S, Ulacia-Hernando A, Kodiyanplakkal RP, et al. Carbapenem-resistant Klebsiella pneumoniae exhibit variability in capsular polysaccharide and capsule associated virulence traits. J Infect Dis. 2014; 210(5): 803-13[DOI][PubMed]
  • 33. Vassena C, Fenu S, Giuliani F, Fantetti L, Roncucci G, Simonutti G, et al. Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material. Int J Antimicrob Agents. 2014; 44(1): 47-55[DOI][PubMed]
  • 34. Kazemian H, Ghafourian S, Heidari H, Amiri P, Yamchi JK, Shavalipour A, et al. Antibacterial, anti-swarming and anti-biofilm formation activities of Chamaemelum nobile against Pseudomonas aeruginosa. Rev Soc Bras Med Trop. 2015; 48(4): 432-6[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments