Jundishapur Journal of Microbiology

Published by: Kowsar

Construction of AAV-rat-IL4 and Evaluation of its Modulating Effect on Aβ (1-42)-Induced Proinflammatory Cytokines in Primary Microglia and the B92 Cell Line by Quantitative PCR Assay

Marzieh Jamalidoust 1 , 2 , Mehrdad Ravanshad 1 , * , Mandana Namayandeh 2 , Maryam Zare 2 , Sadaf Asaei 2 and Mazyar Ziyaeyan 2
Authors Information
1 Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
2 Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
Article information
  • Jundishapur Journal of Microbiology: March 01, 2016, 9 (3); e30444
  • Published Online: March 5, 2016
  • Article Type: Research Article
  • Received: June 2, 2015
  • Revised: September 27, 2015
  • Accepted: September 29, 2015
  • DOI: 10.5812/jjm.30444

To Cite: Jamalidoust M, Ravanshad M, Namayandeh M, Zare M, Asaei S, et al. Construction of AAV-rat-IL4 and Evaluation of its Modulating Effect on Aβ (1-42)-Induced Proinflammatory Cytokines in Primary Microglia and the B92 Cell Line by Quantitative PCR Assay, Jundishapur J Microbiol. 2016 ; 9(3):e30444. doi: 10.5812/jjm.30444.

Abstract
Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Howard DB, Powers K, Wang Y, Harvey BK. Tropism and toxicity of adeno-associated viral vector serotypes 1, 2, 5, 6, 7, 8, and 9 in rat neurons and glia in vitro. Virology. 2008; 372(1): 24-34[DOI][PubMed]
  • 2. Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Molecular therapy. 2006; 14(3): 316-27[PubMed]
  • 3. Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther. 2005; 5(3): 285-97[PubMed]
  • 4. Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T. CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+ PS1 bigenic mice. FASEB J. 2010; 24(8): 3093-102
  • 5. scarpini E, Schelterns P, Feldman H. Treatment of Alzheimer's disease; current status and new perspectives. The Lancet Neurology. 2003; 2(9): 539-47[DOI]
  • 6. Nihira T, Yasuda T, Hirai Y, Shimada T, Mizuno Y, Mochizuki H. Adeno-associated viral vector-mediated gene transduction in mesencephalic slice culture. J Neurosci Methods. 2011; 201(1): 55-60[DOI][PubMed]
  • 7. Ruitenberg MJ, Blits B, Dijkhuizen PA, te Beek ET, Bakker A, van Heerikhuize JJ, et al. Adeno-associated viral vector-mediated gene transfer of brain-derived neurotrophic factor reverses atrophy of rubrospinal neurons following both acute and chronic spinal cord injury. Neurobiol Dis. 2004; 15(2): 394-406[DOI][PubMed]
  • 8. Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet. 2010; 19-20[DOI][PubMed]
  • 9. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. State-specific projections through 2025 of Alzheimer disease prevalence. Neurology. 2004; 62(9): 1645[PubMed]
  • 10. Benveniste EN, Nguyen VT, O'Keefe GM. Immunological aspects of microglia: relevance to Alzheimer's disease. Neurochemistry Int. 2001; 39(5-6): 381-91[DOI]
  • 11. Bornemann KD, Wiederhold KH, Pauli C, Ermini F, Stalder M, Schnell L, et al. Aβ-Induced Inflammatory Processes in Microglia Cells of APP23 Transgenic Mice. Am J Pathol. 2001; 158(1): 63-73[DOI]
  • 12. Tan RH, Wong S, Hodges JR, Halliday GM, Hornberger M. Retrosplenial cortex (BA 29) volumes in behavioral variant frontotemporal dementia and Alzheimer's disease. Dement Geriatr Cogn Disord. 2013; 35(3-4): 177-82[DOI][PubMed]
  • 13. Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer's disease, role of cytokines. The Scientific World Journal. 2012; 2012
  • 14. Giraudon P, Bernard A. Inflammation in neuroviral diseases. J Neural Transm. 2010; 117: 899-906
  • 15. Browne TC, McQuillan K, McManus RM, O’Reilly J, Mills K, Lynch MA. IFN-γ Production by Amyloid β–Specific Th1 Cells Promotes Microglial Activation and Increases Plaque Burden in a Mouse Model of Alzheimer’s Disease. J Immunol. 2013; 190(5): 2241-51
  • 16. Moreira PI, Zhu X, Nunomura A, Smith MA, Perry G. Therapeutic options in Alzheimer's disease. Expert Rev Neurother. 2006; 6(6): 897-910[DOI][PubMed]
  • 17. Brown MA, Hural J. Functions of IL-4 and control of its expression. Crit Rev Immunol. 1997; 17(1): 1-32[PubMed]
  • 18. Cho W, Kim Y, Jeoung DI, Kim YM, Choe J. IL-4 and IL-13 suppress prostaglandins production in human follicular dendritic cells by repressing COX-2 and mPGES-1 expression through JAK1 and STAT6. Mol Immunol. 2011; 48(6-7): 966-72[DOI][PubMed]
  • 19. Shimizu E, Kawahara K, Kajizono M, Sawada M, Nakayama H. IL-4-induced selective clearance of oligomeric β-amyloid peptide1–42 by rat primary type 2 microglia. J Immunol. 2008; 181(9): 6503-13[PubMed]
  • 20. Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VA, Bavazzano A, et al. Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol. 2004; 39(10): 1555-61[DOI][PubMed]
  • 21. Chao CC, Hu S, Ehrlich L, Peterson PK. Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun. 1995; 9(4): 355-65[PubMed]
  • 22. Downen M, Amaral TD, Hua LL, Zhao M, Lee SC. Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-α. Glia. 1999; 28(2): 114-27[DOI]
  • 23. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993; 361(6407): 31-9[DOI][PubMed]
  • 24. Li A, Katafuchi T, Oda S, Hori T, Oomura Y. Interleukin-6 inhibits long-term potentiation in rat hippocampal slices. Brain Research. 1997; 748(1-2): 30-8[DOI]
  • 25. Vallieres L, Campbell IL, Gage FH, Sawchenko PE. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci. 2002; 22(2): 486-92[PubMed]
  • 26. Madeo J, Frieri M. Alzheimer's disease and immunotherapy. Aging Dis. 2013; 4(4): 210-20[PubMed]
  • 27. Deverman BE, Patterson PH. Cytokines and CNS development. Neuron. 2009; 64(1): 61-78[DOI][PubMed]
  • 28. Szczepanik A. IL-4, IL-10 and IL-13 modulate Aβ(1–42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. Journal of Neuroimmunology. 2001; 113(1): 49-62[DOI]
  • 29. Lyons A, Griffin RJ, Costelloe CE, Clarke RM, Lynch MA. IL-4 attenuates the neuroinflammation induced by amyloid-beta in vivo and in vitro. J Neurochem. 2007; 101(3): 771-81[DOI][PubMed]
  • 30. Yang XY, Wang LH, Mihalic K, Xiao W, Chen T, Li P, et al. Interleukin (IL)-4 indirectly suppresses IL-2 production by human T lymphocytes via peroxisome proliferator-activated receptor gamma activated by macrophage-derived 12/15-lipoxygenase ligands. J Biol Chem. 2002; 277(6): 3973-8[DOI][PubMed]
  • 31. Alvarez A, Cacabelos R, Sanpedro C, Garcia-Fantini M, Aleixandre M. Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging. 2007; 28(4): 533-6[DOI][PubMed]
  • 32. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986; 136(7): 2348-57[PubMed]
  • 33. Zhao W, Xie W, Xiao Q, Beers DR, Appel SH. Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J Neurochem. 2006; 99(4): 1176-87[DOI][PubMed]
  • 34. Iribarren P, Cui Y, Le Y, Ying G, Zhang X, Gong W, et al. IL-4 down-regulates lipopolysaccharide-induced formyl peptide receptor 2 in murine microglial cells by inhibiting the activation of mitogen-activated protein kinases. J Immunol. 2003; 171(10): 5482-8[PubMed]
  • 35. Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2003; 74(9): 1200-5[PubMed]
  • 36. Song C, Halbreich U, Han C, Leonard BE, Luo H. Imbalance between pro- and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electroacupuncture or fluoxetine treatment. Pharmacopsychiatry. 2009; 42(5): 182-8[DOI][PubMed]
  • 37. Zuliani G, Ranzini M, Guerra G, Rossi L, Munari MR, Zurlo A, et al. Plasma cytokines profile in older subjects with late onset Alzheimer's disease or vascular dementia. J Psychiatr Res. 2007; 41(8): 686-93[DOI][PubMed]
  • 38. Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer's disease: a 6-month pilot study. MedGenMed. 2006; 8(2): 25[PubMed]
  • 39. Meda L, Baron P, Prat E, Scarpini E, Scarlato G, Cassatella M, et al. Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with β-amyloid[25–35]. Journal of Neuroimmunology. 1999; 93(1-2): 45-52[DOI]
  • 40. Strauss S, Bauer J, Ganter U, Jonas U, Berger M, Volk B. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer's disease patients. Lab Invest 1992; 66(2): 223-30[PubMed]
  • 41. Cojocaru I, Cojocaru M, Miu G, Sapira V. Study of interleukin-6 production in Alzheimer's disease. Rom J Intern Med. 2011; 49(1): 55-8[PubMed]
  • 42. Bossu P, Ciaramella A, Salani F, Bizzoni F, Varsi E, Di Iulio F, et al. Interleukin-18 produced by peripheral blood cells is increased in Alzheimer's disease and correlates with cognitive impairment. Brain Behav Immun. 2008; 22(4): 487-92[DOI][PubMed]
  • 43. Lindberg C, Chromek M, Ahrengart L, Brauner A, Schultzberg M, Garlind A. Soluble interleukin-1 receptor type II, IL-18 and caspase-1 in mild cognitive impairment and severe Alzheimer's disease. Neurochem Int. 2005; 46(7): 551-7[DOI][PubMed]
  • 44. Bossu P, Ciaramella A, Salani F, Vanni D, Palladino I, Caltagirone C, et al. Interleukin-18, from neuroinflammation to Alzheimer's disease. Curr Pharm Des. 2010; 16(38): 4213-24[PubMed]
  • 45. Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttila T. Expression of interleukin-18 is increased in the brains of Alzheimer's disease patients. Neurobiol Aging. 2009; 30(2): 198-209[DOI][PubMed]
  • 46. Chen L, Grabowski KA, Xin J, Coleman J, Huang Z, Espiritu B, et al. IL-4 induces differentiation and expansion of Th2 cytokine-producing eosinophils. J Immunol. 2004; 172(4): 2059-66[PubMed]
  • 47. Lugaresi A, Di Iorio A, Iarlori C, Reale M, De Luca G, Sparvieri E, et al. IL-4 in vitro production is upregulated in Alzheimer's disease patients treated with acetylcholinesterase inhibitors. Exp Gerontol. 2004; 39(4): 653-7[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments