Jundishapur Journal of Microbiology

Published by: Kowsar

Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

Mansoureh Shahbazi Dastjerdeh 1 , Shirin Kouhpayeh 2 , Faezeh Sabzehei 1 , Hossein Khanahmad 1 , * , Mansour Salehi 1 , Zahra Mohammadi 1 , Laleh Shariati 3 , Zahra Hejazi 1 , Parisa Rabiei 1 and Mostafa Manian 2
Authors Information
1 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
2 Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
3 Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: January 01, 2016, 9 (1); e29384
  • Published Online: January 2, 2016
  • Article Type: Research Article
  • Received: April 22, 2015
  • Revised: September 5, 2015
  • Accepted: October 7, 2015
  • DOI: 10.5812/jjm.29384

To Cite: Shahbazi Dastjerdeh M, Kouhpayeh S, Sabzehei F, Khanahmad H, Salehi M, et al. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance, Jundishapur J Microbiol. 2016 ; 9(1):e29384. doi: 10.5812/jjm.29384.

Abstract
Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Spellberg B, Bartlett JG, Gilbert DN. The future of antibiotics and resistance. N Engl J Med. 2013; 368(4): 299-302[DOI][PubMed]
  • 2. Kummerer K. Antibiotics in the aquatic environment--a review--part II. Chemosphere. 2009; 75(4): 435-41[DOI][PubMed]
  • 3. Singer RS, Finch R, Wegener HC, Bywater R, Walters J, Lipsitch M. Antibiotic resistance—the interplay between antibiotic use in animals and human beings. Lance Infect Dise. 2003; 3(1): 47-51[PubMed]
  • 4. Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol. 2006; 8(7): 1137-44[DOI][PubMed]
  • 5. Sarmah AK, Meyer MT, Boxall AB. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 2006; 65(5): 725-59[DOI][PubMed]
  • 6. Hoa PT, Managaki S, Nakada N, Takada H, Shimizu A, Anh DH, et al. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Sci Total Environ. 2011; 409(15): 2894-901[DOI][PubMed]
  • 7. Grundmann H, Klugman KP, Walsh T, Ramon-Pardo P, Sigauque B, Khan W, et al. A framework for global surveillance of antibiotic resistance. Drug Resist Updat. 2011; 14(2): 79-87[DOI][PubMed]
  • 8. Tatavarthy A, Peak K, Veguilla W, Reeves F, Cannons A, Amuso P, et al. Comparison of antibiotic susceptibility profiles and molecular typing patterns of clinical and environmental Salmonella enterica serotype Newport. J Food Prot. 2006; 69(4): 749-56[PubMed]
  • 9. Abriouel H, Omar NB, Molinos AC, Lopez RL, Grande MJ, Martinez-Viedma P, et al. Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int J Food Microbiol. 2008; 123(1-2): 38-49[DOI][PubMed]
  • 10. Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecolog Indicat. 2008; 8(1): 1-13
  • 11. Lavilla Lerma L, Benomar N, Knapp CW, Correa Galeote D, Galvez A, Abriouel H. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products. PLoS One. 2014; 9(12)[DOI][PubMed]
  • 12. Norman A, Hansen LH, Sorensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1527): 2275-89[DOI][PubMed]
  • 13. Andes D, Craig WA. Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect. 2005; 11 Suppl 6: 10-7[DOI][PubMed]
  • 14. Livermore DM, Brown DF. Detection of beta-lactamase-mediated resistance. J Antimicrob Chemother. 2001; 48 Suppl 1: 59-64[PubMed]
  • 15. Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010; 23(1): 160-201[DOI][PubMed]
  • 16. Wilke MS, Lovering AL, Strynadka NC. Beta-lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol. 2005; 8(5): 525-33[DOI][PubMed]
  • 17. Horrevorts AM, Borst J, Puyk RJ, De Ridder R, Dzoljicdanilovic G, Degener JE, et al. Ecology of Pseudomonas aeruginosa in patients with cystic fibrosis. J Med Microbiol. 1990; 31(2): 119-24[DOI][PubMed]
  • 18. Wu J, Kandavelou K, Chandrasegaran S. Custom-designed zinc finger nucleases: what is next? Cell Mol Life Sci. 2007; 64(22): 2933-44[DOI][PubMed]
  • 19. Sander JD, Maeder ML, Joung JK. Engineering Designer Nucleases with Customized Cleavage Specificities. Curr Protoc Mol Biol. 2011; 12(3): 1-3[DOI]
  • 20. Davis D, Stokoe D. Zinc finger nucleases as tools to understand and treat human diseases. BMC Med. 2010; 8: 42[DOI][PubMed]
  • 21. Remy S, Tesson L, Menoret S, Usal C, Scharenberg AM, Anegon I. Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res. 2010; 19(3): 363-71[DOI][PubMed]
  • 22. McMahon MA, Rahdar M, Porteus M. Gene editing: not just for translation anymore. Nat Methods. 2012; 9(1): 28-31[DOI][PubMed]
  • 23. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A. 2011; 108(29): 12013-7[DOI][PubMed]
  • 24. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. 2011; 29(1): 64-7[DOI][PubMed]
  • 25. Meyer M, de Angelis MH, Wurst W, Kuhn R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A. 2010; 107(34): 15022-6[DOI][PubMed]
  • 26. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004; 275(1): 177-82[DOI][PubMed]
  • 27. Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc. 2006; 1(3): 1637-52[DOI][PubMed]
  • 28. Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK. Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc. 2009; 4(10): 1471-501[DOI][PubMed]
  • 29. Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nat Methods. 2010; 7(2): 91[DOI][PubMed]
  • 30. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 2011; 8(1): 67-9[DOI][PubMed]
  • 31. Osborn MJ, DeFeo AP, Blazar BR, Tolar J. Synthetic zinc finger nuclease design and rapid assembly. Hum Gene Ther. 2011; 22(9): 1155-65[DOI][PubMed]
  • 32. Wilson KA, McEwen AE, Pruett-Miller SM, Zhang J, Kildebeck EJ, Porteus MH. Expanding the Repertoire of Target Sites for Zinc Finger Nuclease-mediated Genome Modification. Mol Ther Nucleic Acids. 2013; 2[DOI][PubMed]
  • 33. Lee HJ, Kweon J, Kim E, Kim S, Kim JS. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 2012; 22(3): 539-48[DOI][PubMed]
  • 34. Qu X, Wang P, Ding D, Li L, Wang H, Ma L, et al. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res. 2013; 41(16): 7771-82[DOI][PubMed]
  • 35. Qu X, Wang P, Ding D, Wang X, Zhang G, Zhou X, et al. Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells. Mol Biol Rep. 2014; 41(9): 5819-27[DOI][PubMed]
  • 36. Velappan N, Sblattero D, Chasteen L, Pavlik P, Bradbury AR. Plasmid incompatibility: more compatible than previously thought? Protein Eng Des Sel. 2007; 20(7): 309-13[DOI][PubMed]
  • 37. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ. A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol. 2010; 649: 247-56[DOI][PubMed]
  • 38. Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods. 2010; 7(6): 459-60[DOI][PubMed]
  • 39. Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol. 2014; 32(11): 1141-5[DOI][PubMed]
  • 40. Hatfult GF, Sarkis GJ. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Molecul Microbiol. 1993; 7(3): 395-405
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments