Jundishapur Journal of Microbiology

Published by: Kowsar

Analysis of Bacillus thuringiensis Population Dynamics and Its Interaction With Pseudomonas fluorescens in Soil

Norma Elena Rojas-Ruiz 1 , Estibaliz Sansinenea-Royano 1 , Maria Lilia Cedillo-Ramirez 1 , Rodolfo Marsch-Moreno 2 , Patricia Sanchez-Alonso 1 and Candelario Vazquez-Cruz 1 , *
Authors Information
1 Centro de Investigaciones en Ciencias Microbiológicas, de la Instituto de Ciencias, de la Benemérita Universidad Autónoma de Puebla, Puebla, México
2 Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
Article information
  • Jundishapur Journal of Microbiology: September 01, 2015, 8 (9); e27953
  • Published Online: September 8, 2015
  • Article Type: Research Article
  • Received: March 2, 2015
  • Revised: May 17, 2015
  • Accepted: May 21, 2015
  • DOI: 10.5812/jjm.27953

To Cite: Rojas-Ruiz N E, Sansinenea-Royano E, Cedillo-Ramirez M L, Marsch-Moreno R, Sanchez-Alonso P, et al. Analysis of Bacillus thuringiensis Population Dynamics and Its Interaction With Pseudomonas fluorescens in Soil, Jundishapur J Microbiol. 2015 ; 8(9):e27953. doi: 10.5812/jjm.27953.

Abstract
Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Karlovsky P. Secondary metabolites in soil ecology. 2008; : 1-17[DOI]
  • 2. Rojas-Ruiz NE, Vazquez-Cruz C, Sanchez-Alonso P, Sansinenea-Royano E. Population analysis of Bacillus thuringiensis interaction in vitro with soil bacteria. Agrociencia. 2010; 44(8): 941-53
  • 3. Haas D, Keel C. Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol. 2003; 41: 117-53[DOI][PubMed]
  • 4. Brodhagen M, Henkels MD, Loper JE. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol. 2004; 70(3): 1758-66[PubMed]
  • 5. Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C, et al. Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol. 2000; 66(2): 487-92[PubMed]
  • 6. Godert AM, Jin M, McLafferty FW, Begley TP. Biosynthesis of the thioquinolobactin siderophore: an interesting variation on sulfur transfer. J Bacteriol. 2007; 189(7): 2941-4[DOI][PubMed]
  • 7. Budde IP, Ullrich MS. Interactions of Pseudomonas syringae pv. glycinea with host and nonhost plants in relation to temperature and phytotoxin synthesis. Mol Plant Microbe Interact. 2000; 13(9): 951-61[DOI][PubMed]
  • 8. Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol. 2008; 74(9): 2902-7[DOI][PubMed]
  • 9. Sansinenea-Royano E, Sanchez-Alonso P, Anastacio Marcelino E, Ibarra-Rendon J, Olmedo-Alvarez G, Vazquez-Cruz C. Homologous recombination to Bacillus thuringiensis chromosome in one step. Agrociencia. 2010; 44(4): 437-47
  • 10. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual+ Cold Spring Harbor. 1989;
  • 11. Song HG, Kim OS, Yoo JJ, Jeon SO, Hong SH, Lee DH, et al. Monitoring of soil bacterial community and some inoculated bacteria after prescribed fire in microcosm. J Microbiol. 2004; 42(4): 285-91[PubMed]
  • 12. Setlow B, Loshon CA, Genest PC, Cowan AE, Setlow C, Setlow P. Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. J Appl Microbiol. 2002; 92(2): 362-75[PubMed]
  • 13. Vilain S, Luo Y, Hildreth MB, Brozel VS. Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl Environ Microbiol. 2006; 72(7): 4970-7[DOI][PubMed]
  • 14. Melo-Santos MAV, Araújo AP, Rios EM, Regis L. Long lasting persistence of Bacillus thuringiensis serovar. israelensis larvicidal activity in Aedes aegypti (Diptera: Culicidae) breeding places is associated to bacteria recycling. Biol Control. 2009; 49(2): 186-91[DOI]
  • 15. Guidi V, Patocchi N, Luthy P, Tonolla M. Distribution of Bacillus thuringiensis subsp. israelensis in Soil of a Swiss Wetland reserve after 22 years of mosquito control. Appl Environ Microbiol. 2011; 77(11): 3663-8[DOI][PubMed]
  • 16. Van Cuyk S, Deshpande A, Hollander A, Duval N, Ticknor L, Layshock J, et al. Persistence of Bacillus thuringiensis subsp. kurstaki in Urban Environments following Spraying. Appl Environ Microbiol. 2011; 77(22): 7954-61[DOI][PubMed]
  • 17. Haddad M, Polanczyk RA, Alves SB, Garcia M. Field persistence of Bacillus thuringiensis on maize leaves (Zea mays L.). Brazilian Journal of Microbiology. 2005; 36(4): 309-314[DOI]
  • 18. Ellis RJ. Artificial soil microcosms: a tool for studying microbial autecology under controlled conditions. J Microbiol Methods. 2004; 56(2): 287-90[PubMed]
  • 19. Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ. Small-Scale DNA Sample Preparation Method for Field PCR Detection of Microbial Cells and Spores in Soil. Appl Environ Microbiol. 1998; 64(7): 2463-72[PubMed]
  • 20. Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol. 2001; 67(10): 4495-503[PubMed]
  • 21. Ticknor LO, Kolsto AB, Hill KK, Keim P, Laker MT, Tonks M, et al. Fluorescent Amplified Fragment Length Polymorphism Analysis of Norwegian Bacillus cereus and Bacillus thuringiensis Soil Isolates. Appl Environ Microbiol. 2001; 67(10): 4863-73[PubMed]
  • 22. Burgmann H, Pesaro M, Widmer F, Zeyer J. A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods. 2001; 45(1): 7-20[PubMed]
  • 23. Dong D, Yan A, Liu H, Zhang X, Xu Y. Removal of humic substances from soil DNA using aluminium sulfate. J Microbiol Methods. 2006; 66(2): 217-22[DOI][PubMed]
  • 24. Fitzpatrick KA, Kersh GJ, Massung RF. Practical method for extraction of PCR-quality DNA from environmental soil samples. Appl Environ Microbiol. 2010; 76(13): 4571-3[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments