Jundishapur Journal of Microbiology

Published by: Kowsar

Detection and Molecular Characterization of the Avian Influenza A (H7N9) Virus in Eastern China in 2013

Zhu Yang 1 , 2 , 3 , * , Zenglin Pei 4 , Kejia Jiang 5 , Wenqing Yu 6 and Yu Wang 3
Authors Information
1 Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
2 Institute of Virology, School of Life Sciences, Nanjing University, Nanjing, China
3 Taizhou Institute of Virology, Taizhou, China
4 State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
5 Department of respiration, People’s Hospital of Taizhou, Taizhou, China
6 Department of Infectious Diseases, People’s Hospital of Taizhou, Taizhou, China
Article information
  • Jundishapur Journal of Microbiology: December 01, 2016, 9 (12); e27752
  • Published Online: December 5, 2016
  • Article Type: Research Article
  • Received: February 10, 2015
  • Revised: November 19, 2016
  • Accepted: November 26, 2016
  • DOI: 10.5812/jjm.27752

To Cite: Yang Z, Pei Z, Jiang K, Yu W, Wang Y. Detection and Molecular Characterization of the Avian Influenza A (H7N9) Virus in Eastern China in 2013, Jundishapur J Microbiol. 2016 ; 9(12):e27752. doi: 10.5812/jjm.27752.

Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992; 56(1): 152-79[PubMed]
  • 2. Rezaei F, Mirshafiey A, Shahmahmoodi S, Shoja Z, Ghavami N, Mokhtari-Azad T. Influenza Virus-like Particle Containing Two Different Subtypes of Hemagglutinin Confers Protection in Mice Against Lethal Challenge With A/PR8 (H1N1) and A/HK (H3N2) Viruses. Iran Red Crescent Med J. 2013; 15(1): 75-82[DOI][PubMed]
  • 3. Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol. 2005; 79(5): 2814-22[DOI][PubMed]
  • 4. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012; 109(11): 4269-74[DOI][PubMed]
  • 5. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013; 9(10): 1003657[DOI][PubMed]
  • 6. Alexander DJ. A review of avian influenza in different bird species. Vet Microbiol. 2000; 74(1-2): 3-13[DOI][PubMed]
  • 7. Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J, Ghedin E, et al. The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog. 2008; 4(5): 1000076[DOI][PubMed]
  • 8. Suarez DL. Evolution of avian influenza viruses. Vet Microbiol. 2000; 74(1-2): 15-27[DOI][PubMed]
  • 9. Mo IP, Brugh M, Fletcher OJ, Rowland GN, Swayne DE. Comparative pathology of chickens experimentally inoculated with avian influenza viruses of low and high pathogenicity. Avian Dis. 1997; 41(1): 125-36[DOI][PubMed]
  • 10. Perdue ML, Garcia M, Senne D, Fraire M. Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res. 1997; 49(2): 173-86[DOI][PubMed]
  • 11. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013; 368(20): 1888-97[DOI][PubMed]
  • 12. Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H, et al. Epidemiology of human infections with avian influenza A(H7N9) virus in China. N Engl J Med. 2014; 370(6): 520-32[DOI][PubMed]
  • 13. Kageyama T, Fujisaki S, Takashita E, Xu H, Yamada S, Uchida Y, et al. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill. 2013; 18(15): 20453[PubMed]
  • 14. Liu W, Yang K, Qi X, Xu K, Ji H, Ai J, et al. Spatial and temporal analysis of human infection with avian influenza A(H7N9) virus in China, 2013. Euro Surveill. 2013; 18(47)[PubMed]
  • 15. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001; 146(12): 2275-89[DOI][PubMed]
  • 16. Kumar S, Tamura K, Nei M. MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci. 1994; 10(2): 189-91[DOI][PubMed]
  • 17. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu: influenza virus receptors in the human airway. Nature. 2006; 440(7083): 435-6[DOI][PubMed]
  • 18. Yang H, Chen LM, Carney PJ, Donis RO, Stevens J. Structures of receptor complexes of a North American H7N2 influenza hemagglutinin with a loop deletion in the receptor binding site. PLoS Pathog. 2010; 6(9): 1001081[DOI][PubMed]
  • 19. Zhou J, Wang D, Gao R, Zhao B, Song J, Qi X, et al. Biological features of novel avian influenza A (H7N9) virus. Nature. 2013; 499(7459): 500-3[DOI][PubMed]
  • 20. Ramos I, Krammer F, Hai R, Aguilera D, Bernal-Rubio D, Steel J, et al. H7N9 influenza viruses interact preferentially with alpha2,3-linked sialic acids and bind weakly to alpha2,6-linked sialic acids. J Gen Virol. 2013; 94: 2417-23[DOI][PubMed]
  • 21. Srinivasan K, Raman R, Jayaraman A, Viswanathan K, Sasisekharan R. Quantitative description of glycan-receptor binding of influenza A virus H7 hemagglutinin. PLoS One. 2013; 8(2): 49597[DOI][PubMed]
  • 22. Sun Y, Tan Y, Wei K, Sun H, Shi Y, Pu J, et al. Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol. 2013; 87(5): 2963-8[DOI][PubMed]
  • 23. Matsuoka Y, Swayne DE, Thomas C, Rameix-Welti MA, Naffakh N, Warnes C, et al. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J Virol. 2009; 83(9): 4704-8[DOI][PubMed]
  • 24. McKimm-Breschkin JL, Sahasrabudhe A, Blick TJ, McDonald M, Colman PM, Hart GJ, et al. Mutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitors. J Virol. 1998; 72(3): 2456-62[PubMed]
  • 25. Sleeman K, Guo Z, Barnes J, Shaw M, Stevens J, Gubareva LV. R292K substitution and drug susceptibility of influenza A(H7N9) viruses. Emerg Infect Dis. 2013; 19(9): 1521-4[DOI][PubMed]
  • 26. McKimm-Breschkin J, Trivedi T, Hampson A, Hay A, Klimov A, Tashiro M, et al. Neuraminidase sequence analysis and susceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir. Antimicrob Agents Chemother. 2003; 47(7): 2264-72[DOI][PubMed]
  • 27. Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001; 293(5536): 1840-2[DOI][PubMed]
  • 28. Mok CK, Lee HH, Lestra M, Nicholls JM, Chan MC, Sia SF, et al. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol. 2014; 88(6): 3568-76[DOI][PubMed]
  • 29. Zhang H, Li X, Guo J, Li L, Chang C, Li Y, et al. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J Gen Virol. 2014; 95: 779-86[DOI][PubMed]
  • 30. Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci U S A. 2008; 105(11): 4381-6[DOI][PubMed]
  • 31. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008; 82(3): 1146-54[DOI][PubMed]
  • 32. Belser JA, Bridges CB, Katz JM, Tumpey TM. Past, present, and possible future human infection with influenza virus A subtype H7. Emerg Infect Dis. 2009; 15(6): 859-65[DOI][PubMed]
  • 33. Gao HN, Lu HZ, Cao B, Du B, Shang H, Gan JH, et al. Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med. 2013; 368(24): 2277-85[DOI][PubMed]
  • 34. Skowronski DM, Janjua NZ, Kwindt TL, De Serres G. Virus-host interactions and the unusual age and sex distribution of human cases of influenza A(H7N9) in China, April 2013. Euro Surveill. 2013; 18(17): 20465[PubMed]
  • 35. Han J, Jin M, Zhang P, Liu J, Wang L, Wen D, et al. Epidemiological link between exposure to poultry and all influenza A(H7N9) confirmed cases in Huzhou city, China, March to May 2013. Euro Surveill. 2013; 18(20)[PubMed]
  • 36. Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A. 2005; 102(51): 18590-5[DOI][PubMed]
  • 37. Qi X, Pan Y, Qin Y, Zu R, Tang F, Zhou M, et al. Molecular characterization of avian-like H1N1 swine influenza a viruses isolated in Eastern China, 2011. Virol Sin. 2012; 27(5): 292-8[DOI][PubMed]
  • 38. Neumann G, Macken CA, Kawaoka Y. Identification of amino acid changes that may have been critical for the genesis of A(H7N9) influenza viruses. J Virol. 2014; 88(9): 4877-96[DOI][PubMed]
  • 39. Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 2007; 20(2): 243-67[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments