Jundishapur Journal of Microbiology

Published by: Kowsar

The Effect of MicroRNA-375 Overexpression, an Inhibitor of Helicobacter pylori-Induced Carcinogenesis, on lncRNA SOX2OT

Mohammad Shafiee 1 , 2 , Seyed Ahmad Aleyasin 1 , * , Seyed Javad Mowla 3 , Mohammad Vasei 4 and Seyed Amir Yazdanparast 5
Authors Information
1 National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
2 Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, IR Iran
3 Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
4 Department of Pathology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
5 Department of Medical Parasitology and Mycology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: September 01, 2016, 9 (9); e23464
  • Published Online: March 5, 2016
  • Article Type: Research Article
  • Received: September 8, 2014
  • Revised: February 9, 2015
  • Accepted: February 15, 2015
  • DOI: 10.5812/jjm.23464

To Cite: Shafiee M, Aleyasin S A, Mowla S J, Vasei M, Yazdanparast S A. The Effect of MicroRNA-375 Overexpression, an Inhibitor of Helicobacter pylori-Induced Carcinogenesis, on lncRNA SOX2OT, Jundishapur J Microbiol. 2016 ; 9(9):e23464. doi: 10.5812/jjm.23464.

Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Noto JM, Peek RM. Helicobacter pylori: an overview. Methods Mol Biol. 2012; 921: 7-10[DOI][PubMed]
  • 2. Zabaleta J. MicroRNA: A Bridge from H. pylori Infection to Gastritis and Gastric Cancer Development. Front Genet. 2012; 3: 294[DOI][PubMed]
  • 3. Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB, Colvin DC, et al. Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Invest. 2013; 123(1): 479-92[DOI][PubMed]
  • 4. Zhou A, Li S, Wu J, Khan FA, Zhang S. Interplay between microRNAs and host pathogen recognition receptors (PRRs) signaling pathways in response to viral infection. Virus Res. 2014; 184: 1-6[DOI][PubMed]
  • 5. Staedel C, Darfeuille F. MicroRNAs and bacterial infection. Cell Microbiol. 2013; 15(9): 1496-507[DOI][PubMed]
  • 6. Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011; 223(2): 102-15[DOI][PubMed]
  • 7. Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007; 6: 60[DOI][PubMed]
  • 8. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004; 32-11[DOI][PubMed]
  • 9. Link A, Kupcinskas J, Wex T, Malfertheiner P. Macro-role of microRNA in gastric cancer. Dig Dis. 2012; 30(3): 255-67[DOI][PubMed]
  • 10. O'Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012; 30: 295-312[DOI][PubMed]
  • 11. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006; 312(5772): 436-9[DOI][PubMed]
  • 12. Kiga K, Mimuro H, Suzuki M, Shinozaki-Ushiku A, Kobayashi T, Sanada T, et al. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat Commun. 2014; 5: 4497[DOI][PubMed]
  • 13. Zhang T, Yu J, Zhang Y, Li L, Chen Y, Li D, et al. Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor. J Infect Dis. 2014; 209(12): 2000-11[DOI][PubMed]
  • 14. Archambaud C, Sismeiro O, Toedling J, Soubigou G, Becavin C, Lechat P, et al. The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. MBio. 2013; 4(6)-13[DOI][PubMed]
  • 15. Arjomandzadegan M, Owlia P, Ranjbar R, Farazi AA, Sofian M, Sadrnia M, et al. Rapid and simple approach for identification of Mycobacterium tuberculosis and M. bovis by detection of regulatory gene whiB7. Acta Microbiol Immunol Hung. 2011; 58(1): 65-74[DOI][PubMed]
  • 16. Cremer TJ, Butchar JP, Tridandapani S. Francisella Subverts Innate Immune Signaling: Focus On PI3K/Akt. Front Microbiol. 2011; 5: 13[DOI][PubMed]
  • 17. Cadamuro AC, Rossi AF, Maniezzo NM, Silva AE. Helicobacter pylori infection: host immune response, implications on gene expression and microRNAs. World J Gastroenterol. 2014; 20(6): 1424-37[DOI][PubMed]
  • 18. Eulalio A, Schulte L, Vogel J. The mammalian microRNA response to bacterial infections. RNA Biol. 2012; 9(6): 742-50[DOI][PubMed]
  • 19. Miao L, Liu K, Xie M, Xing Y, Xi T. miR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis by blocking JAK2-STAT3 signaling. Cancer Immunol Immunother. 2014; 63(7): 699-711[DOI][PubMed]
  • 20. Isomoto H, Matsushima K, Inoue N, Hayashi T, Nakayama T, Kunizaki M, et al. Interweaving microRNAs and proinflammatory cytokines in gastric mucosa with reference to H. pylori infection. J Clin Immunol. 2012; 32(2): 290-9[DOI][PubMed]
  • 21. Shahryari A, Rafiee MR, Fouani Y, Oliae NA, Samaei NM, Shafiee M, et al. Two novel splice variants of SOX2OT, SOX2OT-S1, and SOX2OT-S2 are coupregulated with SOX2 and OCT4 in esophageal squamous cell carcinoma. Stem Cells. 2014; 32(1): 126-34[DOI][PubMed]
  • 22. Yoon JH, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 2014; 34: 9-14[DOI][PubMed]
  • 23. Alaei-Mahabadi B, Larsson E. Limited evidence for evolutionarily conserved targeting of long non-coding RNAs by microRNAs. Silence. 2013; 4(1): 4[DOI][PubMed]
  • 24. Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, et al. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA. 2009; 15(11): 2013-27[DOI][PubMed]
  • 25. Jeggari A, Marks DS, Larsson E. miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics. 2012; 28(15): 2062-3[DOI][PubMed]
  • 26. Suganuma M, Yamaguchi K, Ono Y, Matsumoto H, Hayashi T, Ogawa T, et al. TNF-alpha-inducing protein, a carcinogenic factor secreted from H. pylori, enters gastric cancer cells. Int J Cancer. 2008; 123(1): 117-22[DOI][PubMed]
  • 27. Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y, et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010; 20(7): 784-93[DOI][PubMed]
  • 28. Belair C, Baud J, Chabas S, Sharma CM, Vogel J, Staedel C, et al. Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression. Silence. 2011; 2(1): 7[DOI][PubMed]
  • 29. Kountouras J, Kapetanakis N, Zavos C, Polyzos SA, Romiopoulos I, Tsiaousi E, et al. Helicobacter pylori might contribute to cancer and/or bone marrow-derived stem cell-related gastrointestinal oncogenesis. Oncogene. 2014; 34(5): 670[DOI]
  • 30. Bessede E, Staedel C, Acuna Amador LA, Nguyen PH, Chambonnier L, Hatakeyama M, et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes. Oncogene. 2014; 33(32): 4123-31[DOI][PubMed]
  • 31. Asonuma S, Imatani A, Asano N, Oikawa T, Konishi H, Iijima K, et al. Helicobacter pylori induces gastric mucosal intestinal metaplasia through the inhibition of interleukin-4-mediated HMG box protein Sox2 expression. Am J Physiol Gastrointest Liver Physiol. 2009; 297(2)-22[DOI][PubMed]
  • 32. Askarian-Amiri ME, Seyfoddin V, Smart CE, Wang J, Kim JE, Hansji H, et al. Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer. PLoS One. 2014; 9(7)[DOI][PubMed]
  • 33. Lodato MA, Ng CW, Wamstad JA, Cheng AW, Thai KK, Fraenkel E, et al. SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state. PLoS Genet. 2013; 9(2)[DOI][PubMed]
  • 34. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009; 41(11): 1238-42[DOI][PubMed]
  • 35. Hussenet T, du Manoir S. SOX2 in squamous cell carcinoma: amplifying a pleiotropic oncogene along carcinogenesis. Cell Cycle. 2010; 9(8): 1480-6[PubMed]
  • 36. McCaughan F, Pole JC, Bankier AT, Konfortov BA, Carroll B, Falzon M, et al. Progressive 3q amplification consistently targets SOX2 in preinvasive squamous lung cancer. Am J Respir Crit Care Med. 2010; 182(1): 83-91[DOI][PubMed]
  • 37. Nakatsugawa M, Takahashi A, Hirohashi Y, Torigoe T, Inoda S, Murase M, et al. SOX2 is overexpressed in stem-like cells of human lung adenocarcinoma and augments the tumorigenicity. Lab Invest. 2011; 91(12): 1796-804[DOI][PubMed]
  • 38. Spisek R, Kukreja A, Chen LC, Matthews P, Mazumder A, Vesole D, et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med. 2007; 204(4): 831-40[DOI][PubMed]
  • 39. Dhodapkar MV, Dhodapkar KM. Spontaneous and therapy-induced immunity to pluripotency genes in humans: clinical implications, opportunities and challenges. Cancer Immunol Immunother. 2011; 60(3): 413-8[DOI][PubMed]
  • 40. Gure AO, Stockert E, Scanlan MJ, Keresztes RS, Jager D, Altorki NK, et al. Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Proc Natl Acad Sci U S A. 2000; 97(8): 4198-203[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments