Jundishapur Journal of Microbiology

Published by: Kowsar

Identification of Development and Pathogenicity Related Gene in Botrytis cinerea via Digital Gene Expression Profile

Bin Zhao 1 , He Long Si 1 , Zhi Ying Sun 1 , Zheng Xu 1 , Zhan Chen 2 , Jin lin Zhang 1 , Ji Hong Xing 1 , * and Jin Gao Dong 1 , *
Authors Information
1 Mycotoxin and Molecular Plant Pathology Laboratory, Agricultural University of Hebei, Baoding, China
2 Institute of Pomology, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
Corresponding Authors:
Article information
  • Jundishapur Journal of Microbiology: April 01, 2015, 8 (4); e22432
  • Published Online: April 18, 2015
  • Article Type: Research Article
  • Received: July 31, 2014
  • Revised: December 12, 2014
  • Accepted: January 2, 2015
  • DOI: 10.5812/jjm.8(4)2015.22432

To Cite: Zhao B, Si H L, Sun Z Y, Xu Z, Chen Z, et al. Identification of Development and Pathogenicity Related Gene in Botrytis cinerea via Digital Gene Expression Profile, Jundishapur J Microbiol. 2015 ; 8(4):e22432. doi: 10.5812/jjm.8(4)2015.22432.

Abstract
Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Williamson B, Tudzynski B, Tudzynski P, van Kan JA. Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol. 2007; 8(5): 561-80[DOI][PubMed]
  • 2. Rivera MC, Lopez MV, Lopez SE. Mycobiota from Cyclamen persicum and its interaction with Botrytis cinerea. Mycologia. 2009; 101(2): 173-81[PubMed]
  • 3. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, et al. Multiple-laboratory comparison of microarray platforms. Nat Methods. 2005; 2(5): 345-50[DOI][PubMed]
  • 4. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008; 18(9): 1509-17[DOI][PubMed]
  • 5. Shendure J. The beginning of the end for microarrays? Nat Methods. 2008; 5(7): 585-7[DOI][PubMed]
  • 6. Webb PM, Merritt MA, Boyle GM, Green AC. Microarrays and epidemiology: not the beginning of the end but the end of the beginning. Cancer Epidemiol Biomarkers Prev. 2007; 16(4): 637-8[DOI][PubMed]
  • 7. Welle S, Bhatt K, Thornton CA. High-abundance mRNAs in human muscle: comparison between young and old. J Appl Physiol (1985). 2000; 89(1): 297-304[PubMed]
  • 8. Abbott DE, Pritchard C, Clegg NJ, Ferguson C, Dumpit R, Sikes RA, et al. Expressed sequence tag profiling identifies developmental and anatomic partitioning of gene expression in the mouse prostate. Genome Biol. 2003; 4(12)[DOI][PubMed]
  • 9. Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, et al. 3' tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genomics. 2009; 10: 531[DOI][PubMed]
  • 10. Wang QQ, Liu F, Chen XS, Ma XJ, Zeng HQ, Yang ZM. Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics. 2010; 96(6): 369-76[DOI][PubMed]
  • 11. Liu F, Li W, Li Z, Zhang S, Chen S, Su S. High-abundance mRNAs in Apis mellifera: comparison between nurses and foragers. J Insect Physiol. 2011; 57(2): 274-9[DOI][PubMed]
  • 12. Gowda M, Venu RC, Raghupathy MB, Nobuta K, Li H, Wing R, et al. Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods. BMC Genomics. 2006; 7: 310[DOI][PubMed]
  • 13. Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, et al. Next-generation tag sequencing for cancer gene expression profiling. Genome Res. 2009; 19(10): 1825-35[DOI][PubMed]
  • 14. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. Agrobacterium-Mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer. Phytopathology. 2001; 91(2): 173-80[DOI][PubMed]
  • 15. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997; 7(10): 986-95[PubMed]
  • 16. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001; 125(1-2): 279-84[PubMed]
  • 17. Knogge W. Fungal Infection of Plants. Plant Cell. 1996; 8(10): 1711-22[DOI][PubMed]
  • 18. Morcx S, Kunz C, Choquer M, Assie S, Blondet E, Simond-Cote E, et al. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6). Fungal Genet Biol. 2013; 52: 1-8[DOI][PubMed]
  • 19. Cui Z, Wang Y, Lei N, Wang K, Zhu T. Botrytis cinerea chitin synthase BcChsVI is required for normal growth and pathogenicity. Curr Genet. 2013; 59(3): 119-28[DOI][PubMed]
  • 20. Collmer A, Keen NT. The Role of Pectic Enzymes in Plant Pathogenesis. Annu Rev Phytopathol. 1986; 24(1): 383-409[DOI]
  • 21. Cole L, Dewey FM, Hawes CR. Immunocytochemical studies of the infection mechanisms of Botrytis fabae I. The fungal extracellular matrix in penetration and post-penetration processes. New Phytol. 1998; 139(4): 597-609[DOI]
  • 22. Verhoeff K, Warren JM. In vitro and in vivo production of cell wall degrading enzymes by Botrytis cinerea from tomato. Neth J Plant Pathol. 1972; 78(4): 179-85
  • 23. Van den Heuvel J, Waterreus LP. Pectic enzymes associated with phosphate-stimulated infection of French bean leaves by Botrytis cinerea. Neth J Plant Pathol. 1985; 91(6): 253-64
  • 24. van Kan JA, van't Klooster JW, Wagemakers CA, Dees DC, van der Vlugt-Bergmans CJ. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant Microbe Interact. 1997; 10(1): 30-8[DOI][PubMed]
  • 25. Reis H, Pfiffi S, Hahn M. Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol. 2005; 6(3): 257-67[DOI][PubMed]
  • 26. Jeya M, Kim TS, Tiwari MK, Li J, Zhao H, Lee JK. The Botrytis cinerea type III polyketide synthase shows unprecedented high catalytic efficiency toward long chain acyl-CoAs. Mol Biosyst. 2012; 8(11): 2864-7[DOI][PubMed]
  • 27. Dalmais B, Schumacher J, Moraga J, L. E. Pecheur P , Tudzynski B, Collado IG, et al. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol Plant Pathol. 2011; 12(6): 564-79[DOI][PubMed]
  • 28. Mitchell TK, Dean RA. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell. 1995; 7(11): 1869-78[DOI][PubMed]
  • 29. Xu JR. Map kinases in fungal pathogens. Fungal Genet Biol. 2000; 31(3): 137-52[DOI][PubMed]
  • 30. Lee N, D'Souza CA, Kronstad JW. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol. 2003; 41: 399-427[DOI][PubMed]
  • 31. Schumacher J, Viaud M, Simon A, Tudzynski B. The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol Microbiol. 2008; 67(5): 1027-50[DOI][PubMed]
  • 32. Gronover CS, Kasulke D, Tudzynski P, Tudzynski B. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact. 2001; 14(11): 1293-302[DOI][PubMed]
  • 33. Doehlemann G, Berndt P, Hahn M. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol. 2006; 59(3): 821-35[DOI][PubMed]
  • 34. Klimpel A, Gronover CS, Williamson B, Stewart JA, Tudzynski B. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol Plant Pathol. 2002; 3(6): 439-50[DOI][PubMed]
  • 35. Zheng L, Campbell M, Murphy J, Lam S, Xu JR. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact. 2000; 13(7): 724-32[DOI][PubMed]
  • 36. Wolanin PM, Thomason PA, Stock JB. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. 2002; 3(10)[PubMed]
  • 37. Alex LA, Simon MI. Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet. 1994; 10(4): 133-8[PubMed]
  • 38. Cui W, Beever RE, Parkes SL, Weeds PL, Templeton MD. An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet Biol. 2002; 36(3): 187-98[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments