Jundishapur Journal of Microbiology

Published by: Kowsar

A Review Approaches to Identify Enteric Bacterial Pathogens

Jafar Amani 1 , Seyed Ali Mirhosseini 1 and Abbas Ali Imani Fooladi 1 , *
Authors Information
1 Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: February 01, 2015, 8 (2); e17473
  • Published Online: December 10, 2014
  • Article Type: Review Article
  • Received: January 12, 2014
  • Revised: March 10, 2014
  • Accepted: April 5, 2014
  • DOI: 10.5812/jjm.17473

To Cite: Amani J, Mirhosseini S A, Imani Fooladi A A. A Review Approaches to Identify Enteric Bacterial Pathogens, Jundishapur J Microbiol. 2015 ; 8(2):e17473. doi: 10.5812/jjm.17473.

Abstract
Copyright © 2014, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Acknowledgements
Footnote
References
  • 1. Pawlowski SW, Warren CA, Guerrant R. Diagnosis and treatment of acute or persistent diarrhea. Gastroenterology. 2009; 136(6): 1874-86[DOI][PubMed]
  • 2. Guerrant RL, Kosek M, Lima AA, Lorntz B, Guyatt HL. Updating the DALYs for diarrhoeal disease. Trends Parasitol. 2002; 18(5): 191-3[PubMed]
  • 3. Checkley W, Buckley G, Gilman RH, Assis AM, Guerrant RL, Morris SS, et al. Multi-country analysis of the effects of diarrhoea on childhood stunting. Int J Epidemiol. 2008; 37(4): 816-30[DOI][PubMed]
  • 4. Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ. 2003; 81(3): 197-204[PubMed]
  • 5. Warsen AE, Krug MJ, LaFrentz S, Stanek DR, Loge FJ, Call DR. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Appl Environ Microbiol. 2004; 70(7): 4216-21[DOI][PubMed]
  • 6. de la Cabada Bauche J, Dupont HL. New Developments in Traveler's Diarrhea. Gastroenterol Hepatol (N Y). 2011; 7(2): 88-95[PubMed]
  • 7. Deisingh AK, Thompson M. Strategies for the detection of Escherichia coli O157:H7 in foods. J Appl Microbiol. 2004; 96(3): 419-29[PubMed]
  • 8. Gui J, Patel IR. Recent advances in molecular technologies and their application in pathogen detection in foods with particular reference to yersinia. J Pathog. 2011; 2011: 310135[DOI][PubMed]
  • 9. Tebbs RS, Wong LY, Brzoska P, Petrauskene OV. Molecular technologies for Salmonella detection Salmonella distribution, adaptation, control measures and molecular technologies. 2012; : 978-53
  • 10. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States--unspecified agents. Emerg Infect Dis. 2011; 17(1): 16-22[DOI][PubMed]
  • 11. Chow VTK, Inglis TJJ, Peng song K. Diagnostic clinical microbiology. Microb Biotechnol. 2006; : 539–93
  • 12. Peele D, Bradfield J, Pryor W, Vore S. Comparison of identifications of human and animal source gram-negative bacteria by API 20E and crystal E/NF systems. J Clin Microbiol. 1997; 35(1): 213-6[PubMed]
  • 13. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP. A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron. 2000; 15(11-12): 549-78[PubMed]
  • 14. Vidova B, Godany A, Sturdik E. Rapid detection methods of microbial pathogens in foods-a short survey. Trnava . 2008; : 5
  • 15. Swaminathan B, Ayres JC, Williams JE. Control of nonspecific staining in the fluorescent antibody technique for the detection of salmonellae in foods. Appl Environ Microbiol. 1978; 35(5): 911-9[PubMed]
  • 16. Swaminathan B, Feng P. Rapid detection of food-borne pathogenic bacteria. Annu Rev Microbiol. 1994; 48: 401-26[DOI][PubMed]
  • 17. Refseth UH, Kolpus T, Mathiesen S, Nesbakken T, Eckner K. Evaluation of a new diagnostic system utilizing magnetic beads for rapid detection of Salmonella in food samples. 2001;
  • 18. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv. 2010; 28(2): 232-54[DOI][PubMed]
  • 19. Rahmani F, Fooladi AA, Marashi SM, Nourani MR. . Drug resistance in Vibrio cholerae strains isolated from clinical specimens. Acta Microbiol Immunol Hung. 2012; 59(1)
  • 20. Kumar R, Surendran PK, Thampuran N. Evaluation of culture, ELISA and PCR assays for the detection of Salmonella in seafood. Lett Appl Microbiol. 2008; 46(2): 221-6[DOI][PubMed]
  • 21. Riyaz-Ul-Hassan S, Verma V, Qazi GN. Evaluation of three different molecular markers for the detection of Staphylococcus aureus by polymerase chain reaction. Food Microbiol. 2008; 25(3): 452-9[DOI][PubMed]
  • 22. Chen Y, Knabel SJ. Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. Appl Environ Microbiol. 2007; 73(19): 6299-304[DOI][PubMed]
  • 23. Choi SH, Lee SB. Development of Reverse Transcriptase-polymerase Chain Reaction of fimA Gene to Detect Viable Salmonella in Milk. J Animal Sci Technol. 2004; 46
  • 24. Perry L, Heard P, Kane M, Kim H, Savikhin S, DomÍNguez W, et al. Application of Multiplex Polymerase Chain Reaction to the Detection of Pathogens in Food. J Rapid Methods Autom Microbiol. 2007; 15(2): 176-98[DOI]
  • 25. Ronner AC, Lindmark H. Quantitative detection of Campylobacter jejuni on fresh chicken carcasses by real-time PCR. J Food Prot. 2007; 70(6): 1373-8[PubMed]
  • 26. O' Grady J , Sedano-Balbas S, Maher M, Smith T, Barry T. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol. 2008; 25(1): 75-84[DOI][PubMed]
  • 27. Malorny B, Anderson A, Huber I. Salmonella real-time PCR-Nachweis. Journal für Verbraucherschutz und Lebensmittelsicherheit. 2007; 2(2): 149-56[DOI]
  • 28. Desai PT, Walsh MK, Weimer BC. Solid-phase capture of pathogenic bacteria by using gangliosides and detection with real-time PCR. Appl Environ Microbiol. 2008; 74(7): 2254-8[DOI][PubMed]
  • 29. Marashi SM, Bakhshi B, Fooladi AA, Tavakoli A, Sharifnia A, Pourshafie MR. Quantitative expression of cholera toxin mRNA in Vibrio cholerae isolates with different CTX cassette arrangements. J Med Microbiol. 2012; 61(8)[DOI][PubMed]
  • 30. Amin Marashi SM, Rajabnia R, Imani Fooladi AA, Hojati Z, Moghim S, Nasr Esfahani B. B expression in Vibrio cholerae Classical and El Tor strains using Real-Time PCR Determination of ctxA Int J Mol Cell Med. 2012; 2(1)
  • 31. Wolf S, Williamson WM, Hewitt J, Rivera-Aban M, Lin S, Ball A, et al. Sensitive multiplex real-time reverse transcription-PCR assay for the detection of human and animal noroviruses in clinical and environmental samples. Appl Environ Microbiol. 2007; 73(17): 5464-70[DOI][PubMed]
  • 32. Casas N, Amarita F, de Maranon IM. Evaluation of an extracting method for the detection of Hepatitis A virus in shellfish by SYBR-Green real-time RT-PCR. Int J Food Microbiol. 2007; 120(1-2): 179-85[DOI][PubMed]
  • 33. Dubois E, Hennechart C, Merle G, Burger C, Hmila N, Ruelle S, et al. Detection and quantification by real-time RT-PCR of hepatitis A virus from inoculated tap waters, salad vegetables, and soft fruits: characterization of the method performances. Int J Food Microbiol. 2007; 117(2): 141-9[DOI][PubMed]
  • 34. Saraylu J, Mehrabadi Fallah J, Imani Fooladi AA, Sabbaghi A, Molla Aghamirzaei H, Hasankhani M. Prevalence and evaluation of toxin genes among uropathogenic Escherichia coli clinical isolates by duplex PCR. J Med Bacteriol. 2012; 1(1)
  • 35. Lisby G. Application of nucleic acid amplification in clinical microbiology. Methods Mol Biol. 1998; 92: 1-29[DOI][PubMed]
  • 36. Mothershed EA, Whitney AM. Nucleic acid-based methods for the detection of bacterial pathogens: present and future considerations for the clinical laboratory. Clin Chim Acta. 2006; 363(1-2): 206-20[DOI][PubMed]
  • 37. Procop GW. Molecular diagnostics for the detection and characterization of microbial pathogens. Clin Infect Dis. 2007; 45 Suppl 2[DOI][PubMed]
  • 38. Darban-Sarokhalil D, Imani Fooladi AA, Maleknejad P, Bameri Z, Aflaki M, Nomanpour B, et al. Comparison of smear microscopy, culture, and real-time PCR for quantitative detection of Mycobacterium tuberculosis in clinical respiratory specimens. Scand J Infect Dis. 2013; 45(4): 250-5[DOI][PubMed]
  • 39. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006; 19(1): 165-256[DOI][PubMed]
  • 40. Fard SY, Nomanpour B, Fatolahzadeh B, Mobarez AM, Darban-Sarokhalil D, Fooladi AA, et al. Hospital acquired pneumonia: comparison of culture and real-time PCR assays for detection of Legionella pneumophila from respiratory specimens at Tehran hospitals. Acta Microbiol Immunol Hung. 2012; 59(3): 355-65[DOI][PubMed]
  • 41. Iijima Y, Asako NT, Aihara M, Hayashi K. Improvement in the detection rate of diarrhoeagenic bacteria in human stool specimens by a rapid real-time PCR assay. J Med Microbiol. 2004; 53: 617-22[PubMed]
  • 42. Karlsen F, Steen HB, Nesland JM. SYBR green I DNA staining increases the detection sensitivity of viruses by polymerase chain reaction. J Virol Methods. 1995; 55(1): 153-6[PubMed]
  • 43. Imani FA, Iman ID, Hosseini DR, Karami A, Marashi SM. Design of a multiplex PCR method for detection of toxigenic-pathogenic in Vibrio cholerae Asian Pac J Trop Med. 2013; 6(2)
  • 44. Mehrabadi JF, Morsali P, Nejad HR, Imani Fooladi AA. Detection of toxigenic Vibrio cholerae with new multiplex PCR J Infect Public Health. 2012; 5(3)
  • 45. Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev. 2009; 22(4): 611-33[DOI][PubMed]
  • 46. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, et al. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol. 2003; 32(1): 3-13[DOI]
  • 47. Toranzo AE, Magariños B, Romalde JL. A review of the main bacterial fish diseases in mariculture systems. Aquaculture. 2005; 246(1-4): 37-61[DOI]
  • 48. Altinok I, Capkin E, Kayis S. Development of multiplex PCR assay for simultaneous detection of five bacterial fish pathogens. Vet Microbiol. 2008; 131(3-4): 332-8[DOI][PubMed]
  • 49. Brown LL, Iwama GK, Evelyn TPT, Nelson WS, Levine RP. Use of the polymerase chain reaction (PCR) to detect DNA from Renibacterium salmoninarum within individual salmonid eggs. Dis Aquat Organ. 1994; 18: 165-71[DOI]
  • 50. Temprano A, Yugueros J, Hernanz C, Sanchez M, Berzal B, Luengo JM, et al. Rapid identification of Yersinia ruckeri by PCR amplification of yruI-yruR quorum sensing. J Fish Dis. 2001; 24(5): 253-61[DOI]
  • 51. Suzuki K, Sakai DK. Real-time PCR for quantification of viable Renibacterium salmoninarum in chum salmon Oncorhynchus keta. Dis Aquat Organ. 2007; 74(3): 209-23[DOI][PubMed]
  • 52. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; 28(12)[PubMed]
  • 53. Compton J. Nucleic acid sequence-based amplification. Nature. 1991; 350(6313): 91-2[DOI][PubMed]
  • 54. Zhang DY, Brandwein M, Hsuih T, Li HB. Ramification amplification: a novel isothermal DNA amplification method. Mol Diagn. 2001; 6(2): 141-50[DOI][PubMed]
  • 55. Bexfield N, Kellam P. Metagenomics and the molecular identification of novel viruses. Vet J. 2011; 190(2): 191-8[DOI][PubMed]
  • 56. Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med. 2008; 358(10): 991-8[DOI][PubMed]
  • 57. Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV, C. D. C. PulseNet Task Force . PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis. 2001; 7(3): 382-9[DOI][PubMed]
  • 58. Boxrud D, Monson T, Stiles T, Besser J. The role, challenges, and support of pulsenet laboratories in detecting foodborne disease outbreaks. Public Health Rep. 2010; 125 Suppl 2: 57-62[PubMed]
  • 59. Ghodousi A, Vatani S, Darban-Sarokhalil D, Omrani M, Fooladi A, Khosaravi A, et al. Development of a new DNA extraction protocol for PFGE typing of Mycobacterium tuberculosis complex. Iran J Microbiol. 2012; 4(1): 44-6[PubMed]
  • 60. Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy S. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens Bioelectron. 2009; 24(12): 3645-51[DOI][PubMed]
  • 61. Xie F, Yang H, Li S, Shen W, Wan J, Johnson ML, et al. Amorphous magnetoelastic sensors for the detection of biological agents. Intermetallics. 2009; 17(4): 270-3[DOI]
  • 62. Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal Chem. 2008; 80(24): 9475-82[DOI][PubMed]
  • 63. Galikowska E, Kunikowska D, Tokarska-Pietrzak E, Dziadziuszko H, Los JM, Golec P, et al. Specific detection of Salmonella enterica and Escherichia coli strains by using ELISA with bacteriophages as recognition agents. Eur J Clin Microbiol Infect Dis. 2011; 30(9): 1067-73[DOI][PubMed]
  • 64. Bhunia AK, Geng T, Lathrop A, Valadez A, Morgan MT. Optical immunosensors for detection of Listeria monocytogenes and Salmonella Enteritidis from food. Optical Technologies for Industrial, Environmental, and Biological Sensing. 2004; : 1-6
  • 65. Koubová V, Brynda E, Karasová L, Škvor J, Homola J, Dostálek J, et al. Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens Actuators B Chem. 2001; 74(1-3): 100-5[DOI]
  • 66. Waswa J, Irudayaraj J, DebRoy C. Direct detection of E. Coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. Food Sci Technol. 2007; 40(2): 187-92[DOI]
  • 67. Hodnik V, Anderluh G. Toxin detection by surface plasmon resonance. Sensors (Basel). 2009; 9(3): 1339-54[DOI][PubMed]
  • 68. Leonard P, Hearty S, Quinn J, O'Kennedy R. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron. 2004; 19(10): 1331-5[DOI][PubMed]
  • 69. Anderson GP, Golden JP, Ligler FS. A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition. Biosens Bioelectron. 1993; 8(5): 249-56[DOI]
  • 70. Cao LK, Anderson GP, Ligler FS, Ezzell J. Detection of Yersinia pestis fraction 1 antigen with a fiber optic biosensor. J Clin Microbiol. 1995; 33(2): 336-41[PubMed]
  • 71. James EA, Schmeltzer K, Ligler FS. Detection of endotoxin using an evanescent wave fiber-optic biosensor. Appl Biochem Biotechnol. 1996; 60(3): 189-202[PubMed]
  • 72. Ogert RA, Shriver-Lake LC, Ligler FS. Toxin detection using a fiber optic-based biosensor. 1993;
  • 73. Ogert RA, Brown JE, Singh BR, Shriver-Lake LC, Ligler FS. Detection of Clostridium botulinum toxin A using a fiber optic-based biosensor. Anal Biochem. 1992; 205(2): 306-12[PubMed]
  • 74. Tempelman LA, King KD, Anderson GP, Ligler FS. Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor. Anal Biochem. 1996; 233(1): 50-7[DOI][PubMed]
  • 75. Anderson GP, King KD, Gaffney KL, Johnson LH. Multi-analyte interrogation using the fiber optic biosensor. Biosens Bioelectron. 2000; 14(10-11): 771-7[PubMed]
  • 76. Lim DV. Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors. Proceedings of the IEEE. 2003; 91(6): 902-7[DOI]
  • 77. Leach FR, Webster JJ. Commercially available firefly luciferase reagents. Methods Enzymol. 1986; 133: 51-70[PubMed]
  • 78. Baker JM, Griffiths MW, Collins-Thompson DL. Bacterial bioluminescence: applications in food microbiology. J Food Prot. 1992; 55(1): 62-70
  • 79. Feldsine PT, Forgey RL, Falbo-Nelson MT, Brunelle SL. Escherichia coli O157:H7 visual immunoprecipitate assay: a comparative validation study. J AOAC Int. 1997; 80(1): 43-8[PubMed]
  • 80. Cox NA, Fung D, Bailey J, Hartman PA, Vasavada PC. Miniaturized kits, immunoassays and DNA hybridization for recognition and identification of foodborne bacteria. Dairy food Sanit. 1987; 7
  • 81. Chain V, Fung D. Comparison of Redigel, Petrifilm, spiral plate system, Isogrid, and aerobic plate count for determining the numbers of aerobic bacteria in selected foods. J food prot. 1991; 54
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments