Jundishapur Journal of Microbiology

Published by: Kowsar

Evaluating the Effect of Copper Nanoparticles in Inhibiting Pseudomonas aeruginosa and Listeria monocytogenes Biofilm Formation

Ehsan Ghasemian 1 , Ali Naghoni 2 , * , Helya Rahvar 3 , Mahsa Kialha 4 and Bahman Tabaraie 5
Authors Information
1 OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
2 Department of Biology, Faculty of Science, University of Isfahan, Isfahan, IR Iran
3 Department of Microbiology and Immunology, McGill University, Montreal, Canada
4 Department of Microbiology, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, IR Iran
5 Kusha Faravar Giti Co., Industrial Research Institute of Biotechnology, Karaj, IR Iran
Article information
  • Jundishapur Journal of Microbiology: May 01, 2015, 8 (5); e17430
  • Published Online: May 31, 2015
  • Article Type: Research Article
  • Received: January 7, 2014
  • Revised: May 13, 2014
  • Accepted: May 25, 2014
  • DOI: 10.5812/jjm.17430

To Cite: Ghasemian E, Naghoni A, Rahvar H, Kialha M, Tabaraie B. Evaluating the Effect of Copper Nanoparticles in Inhibiting Pseudomonas aeruginosa and Listeria monocytogenes Biofilm Formation, Jundishapur J Microbiol. 2015 ; 8(5):e17430. doi: 10.5812/jjm.17430.

Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Borucki MK, Peppin JD, White D, Loge F, Call DR. Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol. 2003; 69(12): 7336-42[PubMed]
  • 2. De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2001; 45(6): 1761-70[DOI][PubMed]
  • 3. Meyer B. Approaches to prevention, removal and killing of biofilms. Int Biodeterioration Biodegradation. 2003; 51(4): 249-53
  • 4. Shafiei M, Abdi Ali A, Shahcheraghi F, Saboora A, Akbari Noghabi K. Eradication of Pseudomonas aeruginosa Biofilms Using the Combination of n-butanolic Cyclamen coum Extract and Ciprofloxacin. Jundishapur J Microbiol. 2014; 7(2)[DOI][PubMed]
  • 5. Marques SC, Rezende J, Alves L, Silva BC, Alves E, Abreu LR, et al. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers. Brazilian J Microbiol. 2007; 38(3): 538-43
  • 6. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002; 8(9): 881-90[DOI][PubMed]
  • 7. Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol. 2005; 156(4): 506-14[DOI][PubMed]
  • 8. Cunliffe D, Smart CA, Alexander C, Vulfson EN. Bacterial adhesion at synthetic surfaces. Appl Environ Microbiol. 1999; 65(11): 4995-5002[PubMed]
  • 9. Briandet R, Meylheuc T, Maher C, Bellon-Fontaine MN. Listeria monocytogenes Scott A: cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions. Appl Environ Microbiol. 1999; 65(12): 5328-33[PubMed]
  • 10. Harvey J, Keenan KP, Gilmour A. Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol. 2007; 24(4): 380-92[DOI][PubMed]
  • 11. Djordjevic D, Wiedmann M, McLandsborough LA. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol. 2002; 68(6): 2950-8[PubMed]
  • 12. Potera C. Forging a link between biofilms and disease. Science. 1999; 283(5409): 1837[PubMed]
  • 13. Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother. 1996; 40(11): 2517-22[PubMed]
  • 14. Kanematsu H, Ikigai H, Yoshitake M. Evaluation of various metallic coatings on steel to mitigate biofilm formation. Int J Mol Sci. 2009; 10(2): 559-71[DOI][PubMed]
  • 15. Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect. 2006; 62(1): 58-63[DOI][PubMed]
  • 16. Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A. Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine. 2009; 5(3): 282-6[DOI][PubMed]
  • 17. Ghasemian E, Naghoni A, Tabaraie B, Tabaraie T. In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Med. 2012; 22(4): 322-8[DOI][PubMed]
  • 18. Rosenberg M. Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett. 1984; 22(3): 289-95
  • 19. Mahdavi M, Jalali M, Kasra K. R. . The Assessment of Biofilm Formation in Iranian Meat Processing Environments. Res J Microbiol. 2008; 3(3): 181-6
  • 20. Herigstad B, Hamilton M, Heersink J. How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods. 2001; 44(2): 121-9
  • 21. Mittal R, Khandwaha RK, Gupta V, Mittal PK, Harjai K. Phenotypic characters of urinary isolates of Pseudomonas aeruginosa & their association with mouse renal colonization. Indian J Med Res. 2006; 123(1): 67-72[PubMed]
  • 22. Lee KK, Yii KC. A comparison of three methods for assaying hydrophobicity of pathogenic vibrios. Letters Appl Microbiol. 1996; 23(5): 343-6
  • 23. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007; 3(1): 95-101[DOI][PubMed]
  • 24. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008; 4(3): 707-16[DOI][PubMed]
  • 25. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol. 2010; 60(1): 75-80
  • 26. Cousins BG, Allison HE, Doherty PJ, Edwards C, Garvey MJ, Martin DS, et al. Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. J Appl Microbiol. 2007; 102(3): 757-65[PubMed]
  • 27. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16(10): 2346-53[DOI][PubMed]
  • 28. Lellouche J, Friedman A, Gedanken A, Banin E. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine. 2012; 7: 5611-24[DOI][PubMed]
  • 29. Eshed M, Lellouche J, Matalon S, Gedanken A, Banin E. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir. 2012; 28(33): 12288-95[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments