Jundishapur Journal of Microbiology

Published by: Kowsar

Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa

Samira Heydari 1 and Fereshteh Eftekhar 1 , *
Authors Information
1 Department of Microbiology, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: March 01, 2015, 8 (3); e15514
  • Published Online: March 21, 2015
  • Article Type: Research Article
  • Received: October 20, 2013
  • Revised: February 19, 2014
  • Accepted: March 9, 2014
  • DOI: 10.5812/jjm.15514

To Cite: Heydari S, Eftekhar F. Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa, Jundishapur J Microbiol. 2015 ; 8(3):e15514. doi: 10.5812/jjm.15514.

Abstract
Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Altoparlak U, Erol S, Akcay MN, Celebi F, Kadanali A. The time-related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients. Burns. 2004; 30(7): 660-4[DOI][PubMed]
  • 2. Lipovy B, Rihova H, Hanslianova M, Gregorova N, Suchanek I, Brychta P. Prevalence and resistance of Pseudomonas aeruginosa in severely burned patients: a 10-year retrospective study. Acta Chir Plast. 2010; 52(2-4): 39-43[PubMed]
  • 3. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 2002; 95 Suppl 41: 22-6[PubMed]
  • 4. Mesaros N, Nordmann P, Plesiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect. 2007; 13(6): 560-78[DOI][PubMed]
  • 5. Kumar V, Sen MR, Nigam C, Gahlot R, Kumari S. Burden of different beta-lactamase classes among clinical isolates of AmpC-producing Pseudomonas aeruginosa in burn patients: A prospective study. Indian J Crit Care Med. 2012; 16(3): 136-40[DOI][PubMed]
  • 6. Queenan AM, Shang W, Bush K, Flamm RK. Differential selection of single-step AmpC or efflux mutants of Pseudomonas aeruginosa by using cefepime, ceftazidime, or ceftobiprole. Antimicrob Agents Chemother. 2010; 54(10): 4092-7[DOI][PubMed]
  • 7. Upadhyay S, Sen MR, Bhattacharjee A. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J Infect Dev Ctries. 2010; 4(4): 239-42[PubMed]
  • 8. Karatuna O, Yagci A. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin Microbiol Infect. 2010; 16(12): 1770-5[DOI][PubMed]
  • 9. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995; 49: 711-45[DOI][PubMed]
  • 10. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003; 426(6964): 306-10[DOI][PubMed]
  • 11. Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O'Toole GA, et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A. 2003; 100(13): 7907-12[DOI][PubMed]
  • 12. Ghafoor A, Hay ID, Rehm BH. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol. 2011; 77(15): 5238-46[DOI][PubMed]
  • 13. Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ. Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol. 2006; 188(23): 8213-21[DOI][PubMed]
  • 14. Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol. 2004; 186(14): 4466-75[DOI][PubMed]
  • 15. Overhage J, Schemionek M, Webb JS, Rehm BH. Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation. Appl Environ Microbiol. 2005; 71(8): 4407-13[DOI][PubMed]
  • 16. Matsukawa M, Greenberg EP. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol. 2004; 186(14): 4449-56[DOI][PubMed]
  • 17. Salimi F, Eftekhar F. Coexistence of AmpC and Extended-Spectrum β-lactamases in Metallo-β-Lactamase Producing Pseudomonas aeruginosa Burn Isolates in Tehran. Jundishapur J Microbiol. 2013; 8(6)[DOI]
  • 18. Eftekhar F, Speert DP. Biofilm formation by persistent and non-persistent isolates of Staphylococcus epidermidis from a neonatal intensive care unit. J Hosp Infect. 2009; 71(2): 112-6[DOI][PubMed]
  • 19. Sekiguchi J, Asagi T, Miyoshi-Akiyama T, Kasai A, Mizuguchi Y, Araake M, et al. Outbreaks of multidrug-resistant Pseudomonas aeruginosa in community hospitals in Japan. J Clin Microbiol. 2007; 45(3): 979-89[DOI][PubMed]
  • 20. Hou W, Sun X, Wang Z, Zhang Y. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections. Invest Ophthalmol Vis Sci. 2012; 53(9): 5624-31[DOI][PubMed]
  • 21. Jabalameli F, Mirsalehian A, Khoramian B, Aligholi M, Khoramrooz SS, Asadollahi P, et al. Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns. 2012; 38(8): 1192-7[DOI][PubMed]
  • 22. Perez LR, Costa MC, Freitas AL, Barth AL. Evaluation of biofilm production by Pseudomonas Aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Braz J Microbiol. 2011; 42(2): 476-9[DOI][PubMed]
  • 23. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002; 416(6882): 740-3[DOI][PubMed]
  • 24. Perez LR, Antunes AL, Freitas AL, Barth AL. When the resistance gets clingy: Pseudomonas aeruginosa harboring metallo-beta-lactamase gene shows high ability to produce biofilm. Eur J Clin Microbiol Infect Dis. 2012; 31(5): 711-4[DOI][PubMed]
  • 25. Chakraborty D, Basu S, Chatterjee P, Dey SK, Das S. Concurrent determination of collagenase and biofilm formation activities in metallo-beta-lactamase producing Pseudomonas aeruginosa. Int J of Microbiol Res. 2011; 2(3): 208-12
  • 26. Oberoi L, Singh N, Sharma P, Aggarwal A. ESBL, MBL and Ampc beta Lactamases Producing Superbugs - Havoc in the Intensive Care Units of Punjab India. J Clin Diagn Res. 2013; 7(1): 70-3[DOI][PubMed]
  • 27. Nucleo E, Fugazza G, Migliavacca R, Spalla M, Comelli M, Pagani L, et al. Differences in biofilm formation and aggregative adherence between beta-lactam susceptible and beta-lactamases producing P. mirabilis clinical isolates. New Microbiol. 2010; 33(1): 37-45[PubMed]
  • 28. Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP, et al. Common beta-lactamases inhibit bacterial biofilm formation. Mol Microbiol. 2005; 58(4): 1012-24[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments