Jundishapur Journal of Microbiology

Published by: Kowsar

Amplification, Sequencing and Cloning of Iranian Native Bacillus subtilis Alpha-amylase Gene in Saccharomyces cerevisiae

Fahimeh Afzal-Javan 1 , 2 and Mohsen Mobini-Dehkordi 1 , 2 , *
Authors Information
1 Department of Genetics, Faculty of Science, University of Shahrekord, Shahrekord, IR Iran
2 Research Institute of Biotechnology, University of Shahrekord, Shahrekord, IR Iran
Article information
  • Jundishapur Journal of Microbiology: October 01, 2013, 6 (8); e7371
  • Published Online: October 1, 2013
  • Article Type: Research Article
  • Received: July 22, 2012
  • Revised: December 8, 2012
  • Accepted: December 22, 2012
  • DOI: 10.5812/jjm.7371

To Cite: Afzal-Javan F, Mobini-Dehkordi M. Amplification, Sequencing and Cloning of Iranian Native Bacillus subtilis Alpha-amylase Gene in Saccharomyces cerevisiae, Jundishapur J Microbiol. 2013 ; 6(8):e7371. doi: 10.5812/jjm.7371.

Copyright © 2013, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Calik P, Ozdamar TH. Carbon sources affect metabolic capacities of Bacillus species for the production of industrial enzymes: theoretical analyses for serine and neutral proteases and alpha-amylase. Biochem Eng J. 2001; 8(1): 61-81[PubMed]
  • 2. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R. Advances in microbial amylases. Biotechnol Appl Biochem. 2000; 31 ( Pt 2): 135-52[PubMed]
  • 3. Ibrahim CO. Development of applications of industrial enzymes from Malaysian indigenous microbial sources. Bioresour Technol. 2008; 99(11): 4572-82[DOI][PubMed]
  • 4. Sumitani J, Hattori N, Nakamura Y, Okuda Y, Kawaguchi T, Arai M. The conserved tryptophan-arginine-tyrosine motif of a proteinaceous alpha-amylase inhibitor T-76 from Streptomyces nitrosporeus is important for inhibition of animal alpha-amylases but not for an alpha-amylase from Bacillus sp. no. 195. J Biosci Bioeng. 2000; 90(1): 74-80[PubMed]
  • 5. Lonsane BK, Ramesh MV. Production of bacterial thermostable alpha-amylase by solid-state fermentation: a potential tool for achieving economy in enzyme production and starch hydrolysis. Adv Appl Microbiol. 1990; 35: 1-56[PubMed]
  • 6. Kathiresan K, Manivannan S. Alpha- amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. African J Biotechnol. 2006; 5(10)
  • 7. Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001; 65(1): 1-43[DOI][PubMed]
  • 8. Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 2004; 50(1): 1-17[DOI][PubMed]
  • 9. Asgher M, Asad MJavaid, Rahman SU, Legge RL. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Engin. 2007; 79(3): 950-955[DOI]
  • 10. Declerck Nathalie, Machius Mischa, Joyet Philippe, Wiegand Georg, Huber Robert, Gaillardin Claude. Engineering the thermostability of Bacillus licheniformis alpha-amylase. Biologiva-Bratislava . 2002; 57: 203-212
  • 11. Karakaş Barçın, İnan Mehmet, Certel Muharrem. Expression and characterization of Bacillus subtilis PY22 α-amylase in Pichia pastoris. J Mol Cat B: Enzymatic. 2010; 64(3–4): 129-134[DOI]
  • 12. Niu D, Shi G, Wang Z. Genetic improvement of alpha-amylase producing Bacillus licheniformis by homolog-mediated alpha-amylase gene amplification. Sheng Wu Gong Cheng Xue Bao. 2009; 25(3): 375-80[PubMed]
  • 13. Dujon B. The yeast genome project: what did we learn? Trends Genet. 1996; 12(7): 263-70[PubMed]
  • 14. Curran Brendan PG, Bugeja Virginia C. Yeast cloning and biotechnology 1993; : 155-175
  • 15. Hicks JB, Hinnen A, Fink GR. Properties of yeast transformation. Cold Spring Harb Symp Quant Biol. 1979; 43 Pt 2: 1305-13[PubMed]
  • 16. Iefuji H, Chino M, Kato M, Iimura Y. Raw-starch-digesting and thermostable alpha-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem J. 1996; 318 ( Pt 3): 989-96[PubMed]
  • 17. Xu D, Yan X. Molecular cloning and characterization of an alpha-amylase with raw starch digestibility from Bacillus sp. Annals Microbiol. 2009; 59: 91-96
  • 18. Brayer GD, Luo Y, Withers SG. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995; 4(9): 1730-42[DOI][PubMed]
  • 19. Svensson B. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol. 1994; 25(2): 141-57[PubMed]
  • 20. Hamilton Lynn M, Kelly Catherine T, Fogarty William M. Purification and properties of the raw starch-degrading α-amylase of Bacillus sp. IMD 434. Biotechnol Lett. 1999; 21(2): 111-115
  • 21. Vihinen M, Mantsala P. Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol. 1989; 24(4): 329-418[DOI][PubMed]
  • 22. Vasseekaran S, Balakumar S, Arasaratnam V. Isolation and Identification of a Bacterial Strain Producing Thermostable alpha-amylase. Tropl Agri Res. 2012; 22: 1-11
  • 23. van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol. 2002; 94(2): 137-55[PubMed]
  • 24. Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, et al. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol. 2003; 20(12): 2076-90[DOI][PubMed]
  • 25. Rosano GL, Ceccarelli EA. Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact. 2009; 8: 41[DOI][PubMed]
  • 26. de Moraes Lidia MP, Astolfi Filho Spartaco, Ulhoa Cirano J. Purification and some properties of an α-amylase glucoamylase fusion protein from Saccharomyces cerevisiae. World Microbiol Biotechnol. 1999; 15(5): 561-564
  • 27. Adrio JL, Demain AL. Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev. 2006; 30(2): 187-214[DOI][PubMed]
  • 28. Alderton AJ, Burr I, Muhlschlegel FA, Tuite MF. Zeocin resistance as a dominant selective marker for transformation and targeted gene deletions in Candida glabrata. Mycoses. 2006; 49(6): 445-51[DOI][PubMed]
  • 29. Prasad R, Kapoor K. Multidrug resistance in yeast Candida. Int Rev Cytol. 2005; 242: 215-48[DOI][PubMed]
  • 30. Rak M, Tetaud E, Godard F, Sagot I, Salin B, Duvezin-Caubet S, et al. Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology. J Biol Chem. 2007; 282(15): 10853-64[DOI][PubMed]
  • 31. Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2007; 104(7): 2402-7[DOI][PubMed]
  • 32. Wang TT, Choi YJ, Lee BH. Transformation systems of non-Saccharomyces yeasts. Crit Rev Biotechnol. 2001; 21(3): 177-218[DOI][PubMed]
  • 33. Wu S, Letchworth GJ. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques. 2004; 36(1): 152-4[PubMed]
  • 34. Shiosaki K, Takata K, Omichi K, Tomita N, Horii A, Ogawa M, et al. Identification of a novel alpha-amylase by expression of a newly cloned human amy3 cDNA in yeast. Gene. 1990; 89(2): 253-8[PubMed]
  • 35. Yin XH, Gagnat J, Gerbaud C, Guerineau M, Virolle MJ. Cloning and characterization of a new alpha-amylase gene from Streptomyces lividans TK24. Gene. 1997; 197(1-2): 37-45[PubMed]
Readers' Comments