Jundishapur Journal of Microbiology

Published by: Kowsar

Assessment of Antibacterial Capability of Rhamnolipids Produced by Two Indigenous Pseudomonas aeruginosa Strains

Tayebe Lotfabad 1 , Fereshteh Shahcheraghi 2 , * and Fahimeh Shooraj 2
Authors Information
1 National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
2 Department of Bacteriology, Pasteur Institute of Iran, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: November 01, 2012, 6 (1); 29-35
  • Published Online: November 1, 2012
  • Article Type: Research Article
  • Received: October 9, 2011
  • Revised: January 5, 2012
  • Accepted: April 29, 2012
  • DOI: 10.5812/jjm.2662

To Cite: Lotfabad T, Shahcheraghi F, Shooraj F. Assessment of Antibacterial Capability of Rhamnolipids Produced by Two Indigenous Pseudomonas aeruginosa Strains, Jundishapur J Microbiol. 2012 ; 6(1):29-35. doi: 10.5812/jjm.2662.

Abstract
Copyright © 2012, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materaials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Jarvis FG, Johnson MJ. A glyco-lipide produced by Pseudomonas Aeruginosa. J American Chem Soc. 1949;71(12):4124-6; 71(12): 4124-6[DOI]
  • 2. Cameotra SS, Makkar RS. Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol. 1998; 50(5): 520-9[DOI]
  • 3. Banat IM, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol. 2000; 53(5): 495-508[DOI][PubMed]
  • 4. Kitamoto D, Isoda H, Nakahara T. Functions and potential applications of glycolipid biosurfactants - from energy-saving materials to gene delivery carriers. J Biosc Bioengin. 2002; 94(3): 187-201[DOI]
  • 5. Cameotra SS, Makkar RS. Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol. 2004; 7(3): 262-6[DOI][PubMed]
  • 6. Kitamoto D. [Naturally engineered glycolipid biosurfactants leading to distinctive self-assembling properties]. Yakugaku Zasshi. 2008;128(5):695-706.; 128(5): 695-706[DOI][PubMed]
  • 7. Morita T, Fukuoka T, Imura T, Kitamoto D. Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnol Appl Biochem. 2009; 53: 39-49[DOI][PubMed]
  • 8. Kitamoto D, Morita T, Fukuoka T, Konishi M-a, Imura T. Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid and Interface Sci. 2009; 14(5): 315-28[DOI]
  • 9. Ahimou F, Jacques P, Deleu M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol. 2000; 27(10): 749-54[DOI]
  • 10. Maier RM, Soberon-Chavez G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol. 2000; 54(5): 625-33[DOI][PubMed]
  • 11. Singh P, Cameotra SS. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 2004; 22(3): 142-6[DOI][PubMed]
  • 12. Biosurfactants: Productions, Properties, Applications. 1993;
  • 13. Banat IM. Characterization of biosurfactants and their use in pollution removal – State of the Art. (Review). Acta Biotechnologica. 1995; 15(3): 251-67[DOI]
  • 14. Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J Antimicrob Chemother. 2006; 57(4): 609-18[DOI][PubMed]
  • 15. Lang S, Wagner F. Structure and properties of biosurfactants. 1987; : 21-45
  • 16. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P. Biosurfactants: Properties, commercial production and application. Curr Sci. 2008; 94(6): 736-47
  • 17. Besson F, Peypoux F, Michel G, Delcambe L. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J Antibiot. 1976; 29(10): 1043-9[DOI][PubMed]
  • 18. Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals. 1997; 25(3): 289-97[DOI][PubMed]
  • 19. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001; 17(5): 1367-71[DOI]
  • 20. Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T. Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol. 1993; 29(1-2): 91-6[DOI]
  • 21. Das P, Mukherjee S, Sen R. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol. 2008; 104(6): 1675-84[DOI][PubMed]
  • 22. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng. 2003; 81(3): 316-22[DOI][PubMed]
  • 23. Benincasa M, Abalos A, Oliveira I, Manresa A. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Int J Gen Molecul Microb. 2004; 85(1): 1-8
  • 24. Nitschke M, Costa SG, Contiero J. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl Biochem Biotechnol. 2010; 160(7): 2066-74[DOI][PubMed]
  • 25. Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA. An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B Biointerfaces. 2009; 69(2): 183-93[DOI][PubMed]
  • 26. Afshar S, Lotfabad T, Roostaazad R, Najafabadi A, Noghabi K. Comparative approach for detection of biosurfactant-producing bacteria isolated from Ahvaz petroleum excavation areas in south of Iran. Ann Microbiol. 2008; 58(3): 555-9[DOI]
  • 27. Wei YH, Chou CL, Chang JS. Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J. 2005; 27(2): 146-54[DOI]
  • 28. Bauer A, Kirby W, Sherris J, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966; 45(4): 493-6[PubMed]
  • 29. Woods GL, Washington JA. Manual of Clinical Microbiology. 1995; : 41
  • 30. Gunther NWt, Nunez A, Fett W, Solaiman DK. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol. 2005; 71(5): 2288-93[DOI][PubMed]
  • 31. Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araujo JM, Mitchell DA, et al. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Physics Lipids. 2007; 147(1): 1-13[DOI][PubMed]
  • 32. Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhöfer F, Brenner-Weiss G, et al. Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Analytic Bioanalytic Chem. 2008; 391(5): 1579-90[DOI][PubMed]
  • 33. Lang S, Wullbrandt D. Rhamnose lipids--biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol. 1999; 51(1): 22-32[DOI]
  • 34. Déziel E, Lépine F, Milot S, Villemur R. Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2000; 1485(2-3): 145-52[DOI]
  • 35. Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole PJ. Characterisation of Pseudomonas rhamnolipids. Biochimica et Biophysica Acta (BBA) - Lipids Lipid Metabol. 1990; 1045(2): 189-93[DOI]
  • 36. Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 1999; 1440(2-3): 244-52[DOI]
  • 37. Haba E, Abalos A, Jáuregui O, Espuny M, Manresa A.
  • 38. Vaara M. Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid A mutants. J Bacteriol. 1981; 148(2): 426-34[PubMed]
  • 39. Ishikawa S, Matsumura Y, Yoshizako F, Tsuchido T. Characterization of a cationic surfactant-resistant mutant isolated spontaneously from Escherichia coli. J Appl Microbiol. 2002; 92(2): 261-8[DOI][PubMed]
  • 40. Yilmaz ES, Sidal U. Investigation of antimicrobial effects of a Pseudomonas-originated biosurfactant. Biologia -Bratislava. 2005; 60: 723-5
  • 41. Onbasli D, Aslim B. Determination of antimicrobial activity and production of some metabolites by Pseudomonas aeruginosa B1 and B2 in sugar beet molasses. African J Biotechnol. 2008; 7(24): 4614-9
  • 42. Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioengin. 2003; 81(3): 316-22[DOI][PubMed]
  • 43. Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, et al. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: Enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids and Surfaces B: Biointerfaces. 2010; 81(2): 397-405[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments