Jundishapur Journal of Microbiology

Published by: Kowsar

Antibiofilm Efficacy of Positively Charged Imidazolium-Based Silver Nanoparticles in Enterococcus faecalis Using Quantitative Real-Time PCR

Mohammadreza Nabavizadeh 1 , 2 , Abbas Abbaszadegan 1 , * , Ahmad Gholami 3 , Zahra Kadkhoda 4 , Hosein Mirhadi 1 , Younes Ghasemi 3 , Azam Safari 3 , Bahram Hemmateenejad 5 , Samira Dorostkar 5 and Hashem Sharghi 5
Authors Information
1 Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, IR Iran
2 Prevention of Oral and Dental Diseases Research Center, Dental School, Shiraz University of Medical Sciences, Shiraz, IR Iran
3 Pharmaceutical Sciences Research Center and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, IR Iran
4 Post graduate student, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, IR Iran
5 Department of Chemistry, Shiraz University, Shiraz, IR Iran
Article information
  • Jundishapur Journal of Microbiology: October 2017, 10 (10); e55616
  • Published Online: September 2, 2017
  • Article Type: Research Article
  • Received: November 23, 2016
  • Revised: June 29, 2017
  • Accepted: July 23, 2017
  • DOI: 10.5812/jjm.55616

To Cite: Nabavizadeh M, Abbaszadegan A, Gholami A, Kadkhoda Z, Mirhadi H, et al. Antibiofilm Efficacy of Positively Charged Imidazolium-Based Silver Nanoparticles in Enterococcus faecalis Using Quantitative Real-Time PCR, Jundishapur J Microbiol. 2017 ; 10(10):e55616. doi: 10.5812/jjm.55616.

Copyright © 2017, Jundishapur Journal of Microbiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. George S, Kishen A. Effect of tissue fluids on hydrophobicity and adherence of Enterococcus faecalis to dentin. J Endod. 2007; 33(12): 1421-5[DOI][PubMed]
  • 2. Ferraz CC, Gomes BP, Zaia AA, Teixeira FB, Souza-Filho FJ. In vitro assessment of the antimicrobial action and the mechanical ability of chlorhexidine gel as an endodontic irrigant. J Endod. 2001; 27(7): 452-5[PubMed]
  • 3. Portenier I, Haapasalo H, Rye A, Waltimo T, Orstavik D, Haapasalo M. Inactivation of root canal medicaments by dentine, hydroxylapatite and bovine serum albumin. Int Endod J. 2001; 34(3): 184-8[PubMed]
  • 4. Molander A, Reit C, Dahlen G, Kvist T. Microbiological status of root-filled teeth with apical periodontitis. Int Endod J. 1998; 31(1): 1-7[PubMed]
  • 5. Pinheiro ET, Gomes BP, Ferraz CC, Sousa EL, Teixeira FB, Souza-Filho FJ. Microorganisms from canals of root-filled teeth with periapical lesions. Int Endod J. 2003; 36(1): 1-11[PubMed]
  • 6. Siqueira JJ, Lopes HP. Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. Int Endod J. 1999; 32(5): 361-9[PubMed]
  • 7. George S, Kishen A, Song KP. The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis. J Endod. 2005; 31(12): 867-72[PubMed]
  • 8. O'Hoy PY, Messer HH, Palamara JE. The effect of cleaning procedures on fracture properties and corrosion of NiTi files. Int Endod J. 2003; 36(11): 724-32[PubMed]
  • 9. Cheung GS, Stock CJ. In vitro cleaning ability of root canal irrigants with and without endosonics. Int Endod J. 1993; 26(6): 334-43[PubMed]
  • 10. Naenni N, Thoma K, Zehnder M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod. 2004; 30(11): 785-7[PubMed]
  • 11. Emilson CG. Susceptibility of various microorganisms to chlorhexidine. Scand J Dent Res. 1977; 85(4): 255-65[PubMed]
  • 12. Gomes-Filho JE, Silva FO, Watanabe S, Cintra LT, Tendoro KV, Dalto LG, et al. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. J Endod. 2010; 36(10): 1698-702[DOI][PubMed]
  • 13. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012; 8(1): 37-45[DOI][PubMed]
  • 14. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16(10): 2346-53[DOI][PubMed]
  • 15. Abbaszadegan A, Ghahramani Y, Gholami A HB, Dorostkar S, Nabavizadeh M. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. Journal of Nanomaterials. 2015(2015)[DOI]
  • 16. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012; 12(8): 4271-5[DOI][PubMed]
  • 17. Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol. 2012; 112(5): 841-52[DOI][PubMed]
  • 18. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012; 338(6109): 903-10[DOI][PubMed]
  • 19. Moghadas L, Narimani T, Shahmoradi M. Antimicrobial activity of a new nanobased endodontic irrigation solution: In vitro study. Dent Hypotheses. 2012; 3(4): 142[DOI]
  • 20. Abbaszadegan A, Nabavizadeh M, Gholami A, Aleyasin ZS, Dorostkar S, Saliminasab M, et al. Positively charged imidazolium-based ionic liquid-protected silver nanoparticles: a promising disinfectant in root canal treatment. Int Endod J. 2015; 48(8): 790-800[DOI][PubMed]
  • 21. Farshad M, Abbaszadegan A, Ghahramani Y, Jamshidzadeh A. Effect of Imidazolium-Based Silver Nanoparticles on Root Dentin Roughness in Comparison with Three Common Root Canal Irrigants. Iran Endod J. 2017; 12(1): 83-6[DOI][PubMed]
  • 22. Kumar R, Surendran PK, Thampuran N. Rapid quantification of Salmonella in seafood by real-time PCR assay. J Microbiol Biotechnol. 2010; 20(3): 569-73[PubMed]
  • 23. Malorny B, Bunge C, Helmuth R. A real-time PCR for the detection of Salmonella Enteritidis in poultry meat and consumption eggs. J Microbiol Methods. 2007; 70(2): 245-51[DOI][PubMed]
  • 24. Nam HM, Srinivasan V, Gillespie BE, Murinda SE, Oliver SP. Application of SYBR green real-time PCR assay for specific detection of Salmonella spp. in dairy farm environmental samples. Int J Food Microbiol. 2005; 102(2): 161-71[DOI][PubMed]
  • 25. O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000; 54: 49-79[DOI][PubMed]
  • 26. Costerton JW. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol. 2001; 9(2): 50-2[PubMed]
  • 27. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod. 2006; 32(2): 93-8[DOI][PubMed]
  • 28. Wang Z, Shen Y, Ma J, Haapasalo M. The effect of detergents on the antibacterial activity of disinfecting solutions in dentin. J Endod. 2012; 38(7): 948-53[DOI][PubMed]
  • 29. Bruniera JF, Silva-Sousa YT, Lara MG, Pitondo-Silva A, Marcaccini AM, Miranda CE. Development of intracanal formulation containing silver nanoparticles. Braz Dent J. 2014; 25(4): 302-6[PubMed]
  • 30. Krishnan R, Arumugam V, Vasaviah SK. The MIC and MBC of Silver Nanoparticles against Enterococcus faecalis - A Facultative Anaerobe. J Nanomed Nanotechnol 2015; 6(3)[DOI]
  • 31. Lotfi M, Vosoughhosseini S, Ranjkesh B, Khani S, Saghiri M, Zand V. Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against Enterococcus faecalis. Afr J Biotechnol. 2011; 10(35): 6799-803[DOI]
  • 32. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011; 45(1): 283-7[DOI][PubMed]
  • 33. Javidi M, Afkhami F, Zarei M, Ghazvini K, Rajabi O. Efficacy of a combined nanoparticulate/calcium hydroxide root canal medication on elimination of Enterococcus faecalis. Aust Endod J. 2014; 40(2): 61-5[DOI][PubMed]
  • 34. Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan DJ, et al. Antibacterial properties of silver-doped titania. Small. 2007; 3(5): 799-803[DOI][PubMed]
  • 35. Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanoparticle Res. 2008; 10(8): 1343-8[DOI]
  • 36. Brito PR, Souza LC, Machado de Oliveira JC, Alves FR, De-Deus G, Lopes HP, et al. Comparison of the effectiveness of three irrigation techniques in reducing intracanal Enterococcus faecalis populations: an in vitro study. J Endod. 2009; 35(10): 1422-7[DOI][PubMed]
  • 37. Siqueira JJ, Rocas IN, Favieri A, Lima KC. Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. J Endod. 2000; 26(6): 331-4[DOI][PubMed]
  • 38. Siqueira JJ, Rocas IN, Paiva SS, Guimaraes-Pinto T, Magalhaes KM, Lima KC. Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 104(1): 122-30[DOI][PubMed]
  • 39. Dametto FR, Ferraz CC, Gomes BP, Zaia AA, Teixeira FB, de Souza-Filho FJ. In vitro assessment of the immediate and prolonged antimicrobial action of chlorhexidine gel as an endodontic irrigant against Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005; 99(6): 768-72[DOI][PubMed]
  • 40. Menezes MM, Valera MC, Jorge AO, Koga-Ito CY, Camargo CH, Mancini MN. In vitro evaluation of the effectiveness of irrigants and intracanal medicaments on microorganisms within root canals. Int Endod J. 2004; 37(5): 311-9[DOI][PubMed]
  • 41. Siqueira JJ, Rocas IN, Santos SR, Lima KC, Magalhaes FA, de Uzeda M. Efficacy of instrumentation techniques and irrigation regimens in reducing the bacterial population within root canals. J Endod. 2002; 28(3): 181-4[DOI][PubMed]
  • 42. Ringel AM, Patterson SS, Newton CW, Miller CH, Mulhern JM. In vivo evaluation of chlorhexidine gluconate solution and sodium hypochlorite solution as root canal irrigants. J Endod. 1982; 8(5): 200-4[DOI][PubMed]
  • 43. Vianna ME, Horz HP, Gomes BP, Conrads G. In vivo evaluation of microbial reduction after chemo-mechanical preparation of human root canals containing necrotic pulp tissue. Int Endod J. 2006; 39(6): 484-92[DOI][PubMed]
  • 44. Ercan E, Ozekinci T, Atakul F, Gul K. Antibacterial activity of 2% chlorhexidine gluconate and 5.25% sodium hypochlorite in infected root canal: in vivo study. J Endod. 2004; 30(2): 84-7[DOI][PubMed]
  • 45. Rocas IN, Siqueira JJ. Comparison of the in vivo antimicrobial effectiveness of sodium hypochlorite and chlorhexidine used as root canal irrigants: a molecular microbiology study. J Endod. 2011; 37(2): 143-50[DOI][PubMed]
  • 46. Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014; 40(2): 285-90[DOI][PubMed]
  • 47. Mozayeni MA, Haeri A, Dianat O, Jafari AR. Antimicrobial effects of four intracanal medicaments on enterococcus faecalis: an in vitro study. Iran Endod J. 2014; 9(3): 195-8[PubMed]
  • 48. Tran KT, Torabinejad M, Shabahang S, Retamozo B, Aprecio RM, Chen JW. Comparison of efficacy of pulverization and sterile paper point techniques for sampling root canals. J Endod. 2013; 39(8): 1057-9[DOI][PubMed]
  • 49. Siqueira JJ, Rocas IN. PCR methodology as a valuable tool for identification of endodontic pathogens. J Dent. 2003; 31(5): 333-9[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments