Jundishapur Journal of Microbiology

Published by: Kowsar

Effects of pH and Temperature on Antibacterial Activity of Zinc Oxide Nanofluid Against Escherichia coli O157: H7 and Staphylococcus aureus

Mahsa Saliani 1 , Razieh Jalal 1 , 2 , * and Elaheh Kafshdare. Goharshadi 1
Authors Information
1 Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, IR Iran
2 Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, IR Iran
Article information
  • Jundishapur Journal of Microbiology: February 01, 2015, 8 (2); e17115
  • Published Online: February 15, 2015
  • Article Type: Research Article
  • Received: January 21, 2014
  • Revised: April 22, 2014
  • Accepted: May 3, 2014
  • DOI: 10.5812/jjm.17115

To Cite: Saliani M, Jalal R, Kafshdare. Goharshadi E. Effects of pH and Temperature on Antibacterial Activity of Zinc Oxide Nanofluid Against Escherichia coli O157: H7 and Staphylococcus aureus, Jundishapur J Microbiol. 2015 ; 8(2):e17115. doi: 10.5812/jjm.17115.

Abstract
Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Tayel AA, El-Tras WF, Moussa S, El-Baz AF, Mahrous H, Salem MF, et al. Antibacterial Action of Zinc Oxide Nanoparticles against Foodborne Pathogens. J Food Safety. 2011; 31(2): 211-8[DOI]
  • 2. Sharma S, Sachdeva P, Virdi JS. Emerging water-borne pathogens. Appl Microbiol Biotechnol. 2003; 61(5-6): 424-8[DOI][PubMed]
  • 3. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol. 2009; 107(4): 1193-201[DOI][PubMed]
  • 4. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine. 2011; 7(2): 184-92[DOI][PubMed]
  • 5. Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles--a review. Environ Pollut. 2013; 172: 76-85[DOI][PubMed]
  • 6. De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, et al. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol. 2010; 246(3): 116-27[DOI][PubMed]
  • 7. Miao AJ, Zhang XY, Luo Z, Chen CS, Chin WC, Santschi PH, et al. Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem. 2010; 29(12): 2814-22[DOI][PubMed]
  • 8. Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem. 2012; 31(1): 93-9[DOI][PubMed]
  • 9. Li M, Zhu L, Lin D. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol. 2011; 45(5): 1977-83[DOI][PubMed]
  • 10. Li M, Pokhrel S, Jin X, Madler L, Damoiseaux R, Hoek EM. Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol. 2011; 45(2): 755-61[DOI][PubMed]
  • 11. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P. ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys. 2010; 121(1): 198-201
  • 12. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004; 275(1): 177-82[DOI][PubMed]
  • 13. Anuradha Jabasingh S, Valli Nachiyar C. Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology. Ind Crops Prod. 2011; 34(3): 1564-71[DOI]
  • 14. Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science. 2007; 316(5831): 1600-3[DOI][PubMed]
  • 15. Zhao X, Wang S, Wu Y, You H, Lv L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol. 2013; 136-137: 49-59[DOI][PubMed]
  • 16. Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, et al. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir. 2008; 24(8): 4140-4[DOI][PubMed]
  • 17. Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009; 29(1): 69-78[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments