Jundishapur Journal of Microbiology

Published by: Kowsar

Role of Oxidative Stress Response and Trehalose Accumulation in the Longevity of Fission Yeast

Bedia Palabiyik 1 , * and Farinaz Jafari Ghods 1
Authors Information
1 Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
Article information
  • Jundishapur Journal of Microbiology: June 01, 2015, 8 (6); e16851
  • Published Online: June 27, 2015
  • Article Type: Research Article
  • Received: December 13, 2013
  • Revised: May 14, 2014
  • Accepted: May 31, 2014
  • DOI: 10.5812/jjm.8(6)2015.16851

To Cite: Palabiyik B, Jafari Ghods F. Role of Oxidative Stress Response and Trehalose Accumulation in the Longevity of Fission Yeast, Jundishapur J Microbiol. 2015 ; 8(6):e16851. doi: 10.5812/jjm.8(6)2015.16851.

Abstract
Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Longo VD. Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. Neurobiol Aging. 1999; 20(5): 479-86[PubMed]
  • 2. Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. Free Radic Biol Med. 2011; 51(2): 327-36[DOI][PubMed]
  • 3. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature. 2002; 418(6895): 344-8[DOI][PubMed]
  • 4. Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science. 2010; 328(5976): 321-6[DOI][PubMed]
  • 5. Fabrizio P, Longo VD. The chronological life span of Saccharomyces cerevisiae. Aging Cell. 2003; 2(2): 73-81[PubMed]
  • 6. Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, et al. Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell. 2008; 7(3): 394-404[DOI][PubMed]
  • 7. Sipiczki M. The Molecular Biology of Schizosaccharomyces pombe. Springer-Verlag. 2004; : 431-43
  • 8. Roux AE, Quissac A, Chartrand P, Ferbeyre G, Rokeach LA. Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell. 2006; 5(4): 345-57[DOI][PubMed]
  • 9. Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P, Ferbeyre G, et al. Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet. 2009; 5(3)[DOI][PubMed]
  • 10. Chen BR, Runge KW. A new Schizosaccharomyces pombe chronological lifespan assay reveals that caloric restriction promotes efficient cell cycle exit and extends longevity. Exp Gerontol. 2009; 44(8): 493-502[DOI][PubMed]
  • 11. Roux AE, Arseneault G, Chartrand P, Ferbeyre G, Rokeach LA. A screen for genes involved in respiration control and longevity in Schizosaccharomyces pombe. Ann N Y Acad Sci. 2010; 1197: 19-27[DOI][PubMed]
  • 12. Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos AP, Ayte J, et al. Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO J. 2010; 29(5): 981-91[DOI][PubMed]
  • 13. Welton RM, Hoffman CS. Glucose monitoring in fission yeast via the Gpa2 galpha, the git5 Gbeta and the git3 putative glucose receptor. Genetics. 2000; 156(2): 513-21[PubMed]
  • 14. Hoffman CS. Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe. Biochem Soc Trans. 2005; 33: 257-60[DOI][PubMed]
  • 15. Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, et al. Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell. 2003; 14(1): 214-29[DOI][PubMed]
  • 16. Chen D, Wilkinson CR, Watt S, Penkett CJ, Toone WM, Jones N, et al. Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol Biol Cell. 2008; 19(1): 308-17[DOI][PubMed]
  • 17. Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev. 1994; 4(1): 82-9[PubMed]
  • 18. Ikner A, Shiozaki K. Yeast signaling pathways in the oxidative stress response. Mutat Res. 2005; 569(1-2): 13-27[DOI][PubMed]
  • 19. Feldmann H. Yeast Molecular and Cell Biology. 2010;
  • 20. Walker GM. Yeast Physiology and Biotechnology. 1998;
  • 21. Blazquez MA, Stucka R, Feldmann H, Gancedo C. Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe. J Bacteriol. 1994; 176(13): 3895-902[PubMed]
  • 22. Franco A, Soto T, Vicente-Soler J, Guillen PV, Cansado J, Gacto M. Characterization of tpp1(+) as encoding a main trehalose-6P phosphatase in the fission yeast Schizosaccharomyces pombe. J Bacteriol. 2000; 182(20): 5880-4[PubMed]
  • 23. Soto T, Fernandez J, Dominguez A, Vicente-Soler J, Cansado J, Gacto M. Analysis of the ntp1+ gene, encoding neutral trehalase in the fission yeast Schizosaccharomyces pombe. Biochim Biophys Acta. 1998; 1443(1-2): 225-9[PubMed]
  • 24. Thevelein JM. Regulation of trehalose mobilization in fungi. Microbiol Rev. 1984; 48(1): 42-59[PubMed]
  • 25. Paredes V, Franco A, Soto T, Vicente-Soler J, Gacto M, Cansado J. Different roles for the stress-activated protein kinase pathway in the regulation of trehalose metabolism in Schizosaccharomyces pombe. Microbiology. 2003; 149: 1745-52[PubMed]
  • 26. Paredes V, Franco A, Madrid M, Soto T, Vicente-Soler J, Gacto M, et al. Transcriptional and post-translational regulation of neutral trehalase in Schizosaccharomyces pombe during thermal stress. Yeast. 2004; 21(7): 593-603[DOI][PubMed]
  • 27. Kig C, Turkel S, Temizkan G. Isolation and characterization of glucose derepressed invertase mutants from Schizosaccharomyces pombe. Biosci Biotechnol Biochem. 2005; 69(12): 2475-8[DOI][PubMed]
  • 28. Palabiyik B, Kig C, Pekmez M, Dalyan L, Arda N, Temizkan G. Investigation of the relationship between oxidative stress and glucose signaling in Schizosaccharomyces pombe. Biochem Genet. 2012; 50(5-6): 336-49[DOI][PubMed]
  • 29. Palabiyik B, Jafari Ghods F, Onay Ucar E. Effects of glucose sensing/signaling on oxidative stress response in glucose repression mutants of Schizosaccharomyces pombe. Genet Mol Res. 2013; 12(4): 5046-56[DOI][PubMed]
  • 30. Quinn J, Findlay VJ, Dawson K, Millar JB, Jones N, Morgan BA, et al. Distinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe. Mol Biol Cell. 2002; 13(3): 805-16[DOI][PubMed]
  • 31. Parrou JL, Francois J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem. 1997; 248(1): 186-8[DOI][PubMed]
  • 32. Neely LA, Hoffman CS. Protein kinase A and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites. Mol Cell Biol. 2000; 20(17): 6426-34[PubMed]
  • 33. Sanchez-Fresneda R, Guirao-Abad JP, Arguelles A, Gonzalez-Parraga P, Valentin E, Arguelles JC. Specific stress-induced storage of trehalose, glycerol and D-arabitol in response to oxidative and osmotic stress in Candida albicans. Biochem Biophys Res Commun. 2013; 430(4): 1334-9[DOI][PubMed]
  • 34. Mahmud SA, Hirasawa T, Shimizu H. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioeng. 2010; 109(3): 262-6[DOI][PubMed]
Readers' Comments