Jundishapur Journal of Microbiology

Published by: Kowsar

Necrotic Response to Low Pathogenic H9N2 Influenza Virus in Chicken Hepatoma Cells

Seyedeh Zahra Mosavi 1 , Shahla Shahsavandi 1 , * , Mohammad Majid Ebrahimi 1 , Ali Reza Hatami 1 , Kaveh Sadeghi 1 and Hassan Shahivandi 2
Authors Information
1 Razi Vaccine and Serum Research Institute, Karaj, IR Iran
2 Social Security Hospital, Khorram Abad, IR Iran
Article information
  • Jundishapur Journal of Microbiology: January 01, 2015, 8 (1); e13770
  • Published Online: January 25, 2014
  • Article Type: Research Article
  • Received: July 23, 2013
  • Revised: September 28, 2013
  • Accepted: October 6, 2013
  • DOI: 10.5812/jjm.13770

To Cite: Mosavi S Z, Shahsavandi S, Ebrahimi M M, Hatami A R, Sadeghi K, et al. Necrotic Response to Low Pathogenic H9N2 Influenza Virus in Chicken Hepatoma Cells, Jundishapur J Microbiol. 2015 ; 8(1):e13770. doi: 10.5812/jjm.13770.

Copyright © 2014, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Chaipan C, Kobasa D, Bertram S, Glowacka I, Steffen I, Tsegaye TS, et al. Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol. 2009; 83(7): 3200-11[DOI][PubMed]
  • 2. Klenk HD, Matrosovich M, Stech J. Animal Viruses: Molecular Biology. 200; : 253–303
  • 3. Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 2006; 80(19): 9896-8[DOI][PubMed]
  • 4. Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology. 1999; 258(1): 1-20[DOI][PubMed]
  • 5. Xing Z, Harper R, Anunciacion J, Yang Z, Gao W, Qu B, et al. Host immune and apoptotic responses to avian influenza virus H9N2 in human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 2011; 44(1): 24-33[DOI][PubMed]
  • 6. Shahsavandi S, Ebrahimi MM, Sadeghi K, Mosavi SZ, Mohammadi A. Dose- and time-dependent apoptosis induced by avian H9N2 influenza virus in human cells. Biomed Res Int. 2013; 2013: 524165[DOI][PubMed]
  • 7. Lowy RJ. Influenza virus induction of apoptosis by intrinsic and extrinsic mechanisms. Int Rev Immunol. 2003; 22(5-6): 425-49[PubMed]
  • 8. Turpin E, Luke K, Jones J, Tumpey T, Konan K, Schultz-Cherry S. Influenza virus infection increases p53 activity: role of p53 in cell death and viral replication. J Virol. 2005; 79(14): 8802-11[DOI][PubMed]
  • 9. Zhirnov OP, Konakova TE, Wolff T, Klenk HD. NS1 protein of influenza A virus down-regulates apoptosis. J Virol. 2002; 76(4): 1617-25[PubMed]
  • 10. Flory E, Kunz M, Scheller C, Jassoy C, Stauber R, Rapp UR, et al. Influenza virus-induced NF-kappaB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IkappaB kinase. J Biol Chem. 2000; 275(12): 8307-14[PubMed]
  • 11. Ma J, Sun Q, Mi R, Zhang H. Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling. J Genet Genomics. 2011; 38(11): 533-7[DOI][PubMed]
  • 12. Zhou Z, Jiang X, Liu D, Fan Z, Hu X, Yan J, et al. Autophagy is involved in influenza A virus replication. Autophagy. 2009; 5(3): 321-8[PubMed]
  • 13. Teifke JP, Klopfleisch R, Globig A, Starick E, Hoffmann B, Wolf PU, et al. Pathology of natural infections by H5N1 highly pathogenic avian influenza virus in mute (Cygnus olor) and whooper (Cygnus cygnus) swans. Vet Pathol. 2007; 44(2): 137-43[DOI][PubMed]
  • 14. Kitsis RN, Molkentin JD. Apoptotic cell death "Nixed" by an ER-mitochondrial necrotic pathway. Proc Natl Acad Sci U S A. 2010; 107(20): 9031-2[DOI][PubMed]
  • 15. Bi J, Deng G, Dong J, Kong F, Li X, Xu Q, et al. Phylogenetic and molecular characterization of H9N2 influenza isolates from chickens in Northern China from 2007-2009. PLoS One. 2010; 5(9)[DOI][PubMed]
  • 16. Shahsavandi S, Ebrahimi MM, Mohammadi A, Zarrin Lebas N. Impact of chicken-origin cells on adaptation of a low pathogenic influenza virus. Cytotechnology. 2013; 65(3): 419-24[DOI][PubMed]
  • 17. Zarrin Lebas N, Shahsavandi S, Mohammadi A, Ebrahimi MM, Bakhshesh M. Replication efficiency of influenza virus H9N2: a comparative analysis between different origin cell types. Jundishapur Microbiol J. 2013; 6(21)[DOI]
  • 18. Tse LV, Marcano VC, Huang W, Pocwierz MS, Whittaker GR. Plasmin-mediated activation of pandemic H1N1 influenza virus hemagglutinin is independent of the viral neuraminidase. J Virol. 2013; 87(9): 5161-9[DOI][PubMed]
  • 19. Ollier L, Caramella A, Giordanengo V, Lefebvre JC. High permissivity of human HepG2 hepatoma cells for influenza viruses. J Clin Microbiol. 2004; 42(12): 5861-5[DOI][PubMed]
  • 20. Moresco KA, Stallknecht DE, Swayne DE. Evaluation and attempted optimization of avian embryos and cell culture methods for efficient isolation and propagation of low pathogenicity avian influenza viruses. Avian Dis. 2010; 54(1 Suppl): 622-6[PubMed]
  • 21. Su B, Wurtzer S, Rameix-Welti MA, Dwyer D, van der Werf S, Naffakh N, et al. Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA). PLoS One. 2009; 4(12)[DOI][PubMed]
  • 22. Matrosovich MN, Krauss S, Webster RG. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology. 2001; 281(2): 156-62[DOI][PubMed]
  • 23. Takizawa T, Nakanishi Y. Role and pathological significance of apoptosis induced by influenza virus infection. Open Antimicrob Agents J. 2010; 2: 22-5[DOI]
  • 24. Matsumura H, Shimizu Y, Ohsawa Y, Kawahara A, Uchiyama Y, Nagata S. Necrotic death pathway in Fas receptor signaling. J Cell Biol. 2000; 151(6): 1247-56[PubMed]
  • 25. Mocarski ES, Upton JW, Kaiser WJ. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol. 2012; 12(2): 79-88[DOI][PubMed]
  • 26. O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol. 2011; 13(12): 1437-42[DOI][PubMed]
  • 27. Halestrap AP, Brenner C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem. 2003; 10(16): 1507-25[PubMed]
  • 28. Waldmeier PC, Zimmermann K, Qian T, Tintelnot-Blomley M, Lemasters JJ. Cyclophilin D as a drug target. Curr Med Chem. 2003; 10(16): 1485-506[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments