Jundishapur Journal of Microbiology

Published by: Kowsar

Down Regulation of ackA-pta Pathway in Escherichia coli BL21 (DE3): A Step Toward Optimized Recombinant Protein Expression System

Nahid Bakhtiari 1 , Manouchehr Mirshahi 1 , Valiollah Babaeipour 2 , * , Nader Maghsoudi 3 and Abbas Tahzibi 4
Authors Information
1 Biochemistry Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
2 Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, IR Iran
3 Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
4 Food and Drug Organization, Ministry of Health of Iran, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: February 01, 2014, 7 (2); e8990
  • Published Online: February 10, 2014
  • Article Type: Research Article
  • Received: November 29, 2012
  • Revised: December 1, 2012
  • Accepted: February 19, 2013
  • DOI: 10.5812/jjm.8990

To Cite: Bakhtiari N, Mirshahi M, Babaeipour V, Maghsoudi N, Tahzibi A. Down Regulation of ackA-pta Pathway in Escherichia coli BL21 (DE3): A Step Toward Optimized Recombinant Protein Expression System, Jundishapur J Microbiol. 2014 ; 7(2):e8990. doi: 10.5812/jjm.8990.

Abstract
Copyright © 2014, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Jonasson P, Liljeqvist S, Nygren PA, Stahl S. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem. 2002; 35: 91-105[PubMed]
  • 2. Farmer WR, Liao JC. Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol. 1997; 63(8): 3205-10[PubMed]
  • 3. Landwall P, Holme T. Influence of glucose and dissolved oxygen concentrations on yields of Escherichia coli B in dialysis culture. J Gen Microbiol. 1977; 103(2): 353-8[PubMed]
  • 4. Mori Hironori, Yano Takuo, Kobayashi Takeshi, Shimizu Shoichi. High Density Cultivation of Biomass in Fed-Batch System with Do-Stat. J Chem Engin Japan. 1979; 12(4): 313-319[DOI]
  • 5. Reiling HE, Laurila H, Fiechter A. Mass culture of Escherichia coli: Medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media. J Biotechnol. 1985; 2(3-4): 191-206[DOI]
  • 6. Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005; 69(1): 12-50[DOI][PubMed]
  • 7. Yang Yea-Tyng, Bennett George N, San Ka-Yiu. Genetic and metabolic engineering. Electronic J Biotechnol. 1998; 1(3): 20-21
  • 8. Kim JY, Cha HJ. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Biotechnol Bioeng. 2003; 83(7): 841-53[DOI][PubMed]
  • 9. Kurreck J. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem. 2003; 270(8): 1628-44[PubMed]
  • 10. Kakuda H, Hosono K, Shiroishi K, Ichihara S. Identification and characterization of the ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of Escherichia coli. J Biochem. 1994; 116(4): 916-22[PubMed]
  • 11. Aiyar SE, Gourse RL, Ross W. Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase alpha subunit. Proc Natl Acad Sci U S A. 1998; 95(25): 14652-7[PubMed]
  • 12. Mooney RA, Artsimovitch I, Landick R. Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J Bacteriol. 1998; 180(13): 3265-75[PubMed]
  • 13. Brown TD, Jones-Mortimer MC, Kornberg HL. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol. 1977; 102(2): 327-36[PubMed]
  • 14. Karunakaran T, Kuramitsu H. Simple and rapid method for isolation of RNA from gram-negative bacteria. Biotechniques. 1996; 20(4): 546-7[PubMed]
  • 15. Cashel M, Gentry DR, Hernandez VJ, Vinella D. Escherichia coli and Salmonella: cellular and molecular biology. 1996; : 1458-1496
  • 16. Holms H. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol Rev. 1996; 19(2): 85-116[PubMed]
  • 17. Holms WH. The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Topics Cell Regultion. 1986; 28: 69-105
  • 18. Crabtree HG. Observations on the carbohydrate metabolism of tumours. Biochem J. 1929; 23(3): 536-45[PubMed]
  • 19. Han K, Lim HC, Hong J. Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng. 1992; 39(6): 663-71[DOI][PubMed]
  • 20. Konstantinov K, Kishimoto M, Seki T, Yoshida T. A balanced DO-stat and its application to the control of acetic acid excretion by recombinant Escherichia coli. Biotechnol Bioeng. 1990; 36(7): 750-8[DOI][PubMed]
  • 21. Luli GW, Strohl WR. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol. 1990; 56(4): 1004-11[PubMed]
  • 22. Majewski RA, Domach MM. Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng. 1990; 35(7): 732-8[DOI][PubMed]
  • 23. Shiloach J, Kaufman J, Guillard AS, Fass R. Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (lambdaDE3) and Escherichia coli JM109. Biotechnol Bioeng. 1996; 49(4): 421-8[PubMed]
  • 24. Akesson M, Hagander P, Axelsson JP. Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng. 2001; 73(3): 223-30[PubMed]
  • 25. Aristidou AA, San KY, Bennett GN. Modification of central metabolic pathway in escherichia coli to reduce acetate accumulation by heterologous expression of the bacillus subtilis acetolactate synthase gene. Biotechnol Bioeng. 1994; 44(8): 944-51[DOI][PubMed]
  • 26. Aristidou AA, San KY, Bennett GN. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnol Prog. 1995; 11(4): 475-8[DOI][PubMed]
  • 27. Bauer KA, Ben-Bassat A, Dawson M, de la Puente VT, Neway JO. Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant. Appl Environ Microbiol. 1990; 56(5): 1296-302[PubMed]
  • 28. Chou CH, Bennett GN, San KY. Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production in escherichia coli dense cultures. Biotechnol Bioeng. 1994; 44(8): 952-60[DOI][PubMed]
  • 29. Dedhia NN, Hottiger T, Bailey JE. Overproduction of glycogen in Escherichia coli blocked in the acetate pathway improves cell growth. Biotechnol Bioeng. 1994; 44(1): 132-9[DOI][PubMed]
  • 30. Delgado J, Liao JC. Inverse flux analysis for reduction of acetate excretion in Escherichia coli. Biotechnol Prog. 1997; 13(4): 361-7[DOI][PubMed]
  • 31. Diaz-Ricci JC, Regan L, Bailey JE. Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of escherichia coli. Biotechnol Bioeng. 1991; 38(11): 1318-24[DOI][PubMed]
  • 32. Hahm DH, Pan J, Rhee JS. Characterization and evaluation of a pta (phosphotransacetylase) negative mutant of Escherichia coli HB101 as production host of foreign lipase. Appl Microbiol Biotechnol. 1994; 42(1): 100-7[PubMed]
  • 33. Robbins JW, Jr, Taylor KB. Optimization of Escherichia coli growth by controlled addition of glucose. Biotechnol Bioeng. 1989; 34(10): 1289-94[DOI][PubMed]
  • 34. Nakashima N, Tamura T, Good L. Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucl Acid Res. 2006; 34(20)[DOI]
  • 35. Kleman GL, Strohl WR. Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl Environ Microbiol. 1994; 60(11): 3952-8[PubMed]
  • 36. McCleary WR, Stock JB. Acetyl phosphate and the activation of two-component response regulators. J Biol Chem. 1994; 269(50): 31567-72[PubMed]
  • 37. Pruss BM, Wolfe AJ. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol. 1994; 12(6): 973-84[PubMed]
  • 38. Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Biotechnol Bioeng. 2005; 90(7): 805-20[DOI][PubMed]
  • 39. Lara AR, Vazquez-Limon C, Gosset G, Bolivar F, Lopez-Munguia A, Ramirez OT. Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions. Biotechnol Bioeng. 2006; 94(6): 1164-75[DOI][PubMed]
  • 40. Vemuri GN, Minning TA, Altman E, Eiteman MA. Physiological response of central metabolism in Escherichia coli to deletion of pyruvate oxidase and introduction of heterologous pyruvate carboxylase. Biotechnol Bioeng. 2005; 90(1): 64-76[DOI][PubMed]
  • 41. El-Mansi M. Flux to acetate and lactate excretions in industrial fermentations: physiological and biochemical implications. J Ind Microbiol Biotechnol. 2004; 31(7): 295-300[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments