Jundishapur Journal of Microbiology

Published by: Kowsar

Construction and Evaluation of a Novel Internal Positive Control (IPC) for Detection of Coxiella burnetii by PCR

Keivan Majidzadeh 1 , 2 , Amirhossein Mohseni 1 and Mohammad Soleimani 1 , *
Authors Information
1 Tasnim Biotechnology of Research Center (TBRC), Faculty of Medicine, AJA University of Medical Sciences, Tehran, IR Iran
2 Cancer Genetics Research Group, Breast Cancer Research Center (BCRC), ACECR, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: January 01, 2014, 7 (1); e8849
  • Published Online: January 1, 2014
  • Article Type: Research Article
  • Received: November 4, 2012
  • Revised: February 19, 2013
  • Accepted: April 23, 2013
  • DOI: 10.5812/jjm.8849

To Cite: Majidzadeh K, Mohseni A, Soleimani M. Construction and Evaluation of a Novel Internal Positive Control (IPC) for Detection of Coxiella burnetii by PCR, Jundishapur J Microbiol. 2014 ; 7(1):e8849. doi: 10.5812/jjm.8849.

Copyright © 2014, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Boulos A, Rolain JM, Maurin M, Raoult D. Measurement of the antibiotic susceptibility of Coxiella burnetii using real time PCR. Int J Antimicrob Agents. 2004; 23(2): 169-74[DOI][PubMed]
  • 2. Waag DM. Coxiella burnetii: host and bacterial responses to infection. Vaccine. 2007; 25(42): 7288-95[DOI][PubMed]
  • 3. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006; 19(1): 165-256[DOI][PubMed]
  • 4. Murphy NM, McLauchlin J, Ohai C, Grant KA. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. Int J Food Microbiol. 2007; 120(1-2): 110-9[DOI][PubMed]
  • 5. Cone RichardW, Hobson AnnC, Huang Meei-Liw, Fairfax MarilynnR. Polymerase chain reaction decontamination: the wipe test. The Lancet. 1990; 336(8716): 686-687
  • 6. Kwok S, Higuchi R. Avoiding false positives with PCR. Nature. 1989; 339(6221): 237-8[DOI][PubMed]
  • 7. Rys PN, Persing DH. Preventing false positives: quantitative evaluation of three protocols for inactivation of polymerase chain reaction amplification products. J Clin Microbiol. 1993; 31(9): 2356-60[PubMed]
  • 8. Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001; 39(2): 485-93[DOI][PubMed]
  • 9. Beutler E, Gelbart T, Kuhl W. Interference of heparin with the polymerase chain reaction. Biotechniques. 1990; 9(2): 166[PubMed]
  • 10. Hartman LJ, Coyne SR, Norwood DA. Development of a novel internal positive control for Taqman based assays. Mol Cell Probes. 2005; 19(1): 51-9[DOI][PubMed]
  • 11. Holodniy M, Kim S, Katzenstein D, Konrad M, Groves E, Merigan TC. Inhibition of human immunodeficiency virus gene amplification by heparin. J Clin Microbiol. 1991; 29(4): 676-9[PubMed]
  • 12. Ijzerman MMarian, Dahling Daniel R, Fout GShay. A method to remove environmental inhibitors prior to the detection of waterborne enteric viruses by reverse transcription-polymerase chain reaction. J Virol Methods. 1997; 63(1-2): 145-153[DOI]
  • 13. Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 1996; 62(3): 1102-6[PubMed]
  • 14. Tsai YL, Olson BH. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol. 1992; 58(7): 2292-5[PubMed]
  • 15. Zimmermann K, Mannhalter JW. Technical aspects of quantitative competitive PCR. Biotechniques. 1996; 21(2): 268-72[PubMed]
  • 16. Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol. 2004; 42(5): 1863-8[PubMed]
  • 17. Tang Y, Wang Q, Saif YM. Development of a ssRNA internal control template reagent for a multiplex RT-PCR to detect turkey astroviruses. J Virol Methods. 2005; 126(1-2): 81-6[DOI][PubMed]
  • 18. Rosenstraus M, Wang Z, Chang SY, DeBonville D, Spadoro JP. An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol. 1998; 36(1): 191-7[PubMed]
  • 19. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997; 63(10): 3741-51[PubMed]
  • 20. Soleimani Mohammad. Analytical specificity and sensitivity determination of 16SrRNA gene based diagnostic polymerase chain reaction (PCR) for molecular detection of Coxiella burnetii. Afr J Microbiol Res. 2012; 6(36)[DOI]
  • 21. Sohni Y, Kanjilal S, Kapur V. Cloning and development of synthetic internal amplification control for Bacillus anthracis real-time polymerase chain reaction assays. Diagn Microbiol Infect Dis. 2008; 61(4): 471-5[DOI][PubMed]
  • 22. Hodgson J, Zuckerman M, Smith M. Development of a novel internal control for a real-time PCR for HSV DNA types 1 and 2. J Clin Virol. 2007; 38(3): 217-20[DOI][PubMed]
  • 23. Niesters HG. Quantitation of viral load using real-time amplification techniques. Methods. 2001; 25(4): 419-29[DOI][PubMed]
  • 24. Parshionikar SU, Cashdollar J, Fout GS. Development of homologous viral internal controls for use in RT-PCR assays of waterborne enteric viruses. J Virol Methods. 2004; 121(1): 39-48[DOI][PubMed]
  • 25. Preiser Wolfgang, Brink Nicola S, Ayliffe Ursula, Peggs Karl S, Mackinnon Stephen, Tedder Richard S, et al. Development and clinical application of a fully controlled quantitative PCR assay for cell-free cytomegalovirus in human plasma. J Clin Virol. 2003; 26(1): 49-59[DOI]
  • 26. Stranska R, Schuurman R, de Vos M, van Loon AM. Routine use of a highly automated and internally controlled real-time PCR assay for the diagnosis of herpes simplex and varicella-zoster virus infections. J Clin Virol. 2004; 30(1): 39-44[DOI][PubMed]
  • 27. Templeton KE, Scheltinga SA, Graffelman AW, Van Schie JM, Crielaard JW, Sillekens P, et al. Comparison and evaluation of real-time PCR, real-time nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae. J Clin Microbiol. 2003; 41(9): 4366-71[PubMed]
  • 28. Whiley DM, Mackay IM, Syrmis MW, Witt MJ, Sloots TP. Detection and differentiation of herpes simplex virus types 1 and 2 by a duplex LightCycler PCR that incorporates an internal control PCR reaction. J Clin Virol. 2004; 30(1): 32-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments