Jundishapur Journal of Microbiology

Published by: Kowsar

Construction and Evaluation of a Novel Internal Positive Control (IPC) for Detection of Coxiella burnetii by PCR

Keivan Majidzadeh 1 , 2 , Amirhossein Mohseni 1 and Mohammad Soleimani 1 , *
Authors Information
1 Tasnim Biotechnology of Research Center (TBRC), Faculty of Medicine, AJA University of Medical Sciences, Tehran, IR Iran
2 Cancer Genetics Research Group, Breast Cancer Research Center (BCRC), ACECR, Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: January 01, 2014, 7 (1); e8849
  • Published Online: January 1, 2014
  • Article Type: Research Article
  • Received: November 4, 2012
  • Revised: February 19, 2013
  • Accepted: April 23, 2013
  • DOI: 10.5812/jjm.8849

To Cite: Majidzadeh K, Mohseni A, Soleimani M. Construction and Evaluation of a Novel Internal Positive Control (IPC) for Detection of Coxiella burnetii by PCR, Jundishapur J Microbiol. 2014 ; 7(1):e8849. doi: 10.5812/jjm.8849.

Abstract
Copyright © 2014, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Boulos A, Rolain JM, Maurin M, Raoult D. Measurement of the antibiotic susceptibility of Coxiella burnetii using real time PCR. Int J Antimicrob Agents. 2004; 23(2): 169-74[DOI][PubMed]
  • 2. Waag DM. Coxiella burnetii: host and bacterial responses to infection. Vaccine. 2007; 25(42): 7288-95[DOI][PubMed]
  • 3. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006; 19(1): 165-256[DOI][PubMed]
  • 4. Murphy NM, McLauchlin J, Ohai C, Grant KA. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. Int J Food Microbiol. 2007; 120(1-2): 110-9[DOI][PubMed]
  • 5. Cone RichardW, Hobson AnnC, Huang Meei-Liw, Fairfax MarilynnR. Polymerase chain reaction decontamination: the wipe test. The Lancet. 1990; 336(8716): 686-687
  • 6. Kwok S, Higuchi R. Avoiding false positives with PCR. Nature. 1989; 339(6221): 237-8[DOI][PubMed]
  • 7. Rys PN, Persing DH. Preventing false positives: quantitative evaluation of three protocols for inactivation of polymerase chain reaction amplification products. J Clin Microbiol. 1993; 31(9): 2356-60[PubMed]
  • 8. Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001; 39(2): 485-93[DOI][PubMed]
  • 9. Beutler E, Gelbart T, Kuhl W. Interference of heparin with the polymerase chain reaction. Biotechniques. 1990; 9(2): 166[PubMed]
  • 10. Hartman LJ, Coyne SR, Norwood DA. Development of a novel internal positive control for Taqman based assays. Mol Cell Probes. 2005; 19(1): 51-9[DOI][PubMed]
  • 11. Holodniy M, Kim S, Katzenstein D, Konrad M, Groves E, Merigan TC. Inhibition of human immunodeficiency virus gene amplification by heparin. J Clin Microbiol. 1991; 29(4): 676-9[PubMed]
  • 12. Ijzerman MMarian, Dahling Daniel R, Fout GShay. A method to remove environmental inhibitors prior to the detection of waterborne enteric viruses by reverse transcription-polymerase chain reaction. J Virol Methods. 1997; 63(1-2): 145-153[DOI]
  • 13. Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 1996; 62(3): 1102-6[PubMed]
  • 14. Tsai YL, Olson BH. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol. 1992; 58(7): 2292-5[PubMed]
  • 15. Zimmermann K, Mannhalter JW. Technical aspects of quantitative competitive PCR. Biotechniques. 1996; 21(2): 268-72[PubMed]
  • 16. Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol. 2004; 42(5): 1863-8[PubMed]
  • 17. Tang Y, Wang Q, Saif YM. Development of a ssRNA internal control template reagent for a multiplex RT-PCR to detect turkey astroviruses. J Virol Methods. 2005; 126(1-2): 81-6[DOI][PubMed]
  • 18. Rosenstraus M, Wang Z, Chang SY, DeBonville D, Spadoro JP. An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol. 1998; 36(1): 191-7[PubMed]
  • 19. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997; 63(10): 3741-51[PubMed]
  • 20. Soleimani Mohammad. Analytical specificity and sensitivity determination of 16SrRNA gene based diagnostic polymerase chain reaction (PCR) for molecular detection of Coxiella burnetii. Afr J Microbiol Res. 2012; 6(36)[DOI]
  • 21. Sohni Y, Kanjilal S, Kapur V. Cloning and development of synthetic internal amplification control for Bacillus anthracis real-time polymerase chain reaction assays. Diagn Microbiol Infect Dis. 2008; 61(4): 471-5[DOI][PubMed]
  • 22. Hodgson J, Zuckerman M, Smith M. Development of a novel internal control for a real-time PCR for HSV DNA types 1 and 2. J Clin Virol. 2007; 38(3): 217-20[DOI][PubMed]
  • 23. Niesters HG. Quantitation of viral load using real-time amplification techniques. Methods. 2001; 25(4): 419-29[DOI][PubMed]
  • 24. Parshionikar SU, Cashdollar J, Fout GS. Development of homologous viral internal controls for use in RT-PCR assays of waterborne enteric viruses. J Virol Methods. 2004; 121(1): 39-48[DOI][PubMed]
  • 25. Preiser Wolfgang, Brink Nicola S, Ayliffe Ursula, Peggs Karl S, Mackinnon Stephen, Tedder Richard S, et al. Development and clinical application of a fully controlled quantitative PCR assay for cell-free cytomegalovirus in human plasma. J Clin Virol. 2003; 26(1): 49-59[DOI]
  • 26. Stranska R, Schuurman R, de Vos M, van Loon AM. Routine use of a highly automated and internally controlled real-time PCR assay for the diagnosis of herpes simplex and varicella-zoster virus infections. J Clin Virol. 2004; 30(1): 39-44[DOI][PubMed]
  • 27. Templeton KE, Scheltinga SA, Graffelman AW, Van Schie JM, Crielaard JW, Sillekens P, et al. Comparison and evaluation of real-time PCR, real-time nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae. J Clin Microbiol. 2003; 41(9): 4366-71[PubMed]
  • 28. Whiley DM, Mackay IM, Syrmis MW, Witt MJ, Sloots TP. Detection and differentiation of herpes simplex virus types 1 and 2 by a duplex LightCycler PCR that incorporates an internal control PCR reaction. J Clin Virol. 2004; 30(1): 32-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments