Jundishapur Journal of Microbiology

Published by: Kowsar

Characterization of AmpC, CTX-M and MBLs types of β-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli producing Extended Spectrum β-lactamases in Kerman, Iran

Shahla Mansouri 1 , Davood Kalantar Neyestanaki 2 , * , Mostafa Shokoohi 3 , Shahnaz Halimi 2 , Reza Beigverdi 2 , Fereshteh Rezagholezadeh 2 and Ali Hashemi 4
Authors Information
1 Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, IR Iran
2 Department of Microbiology, School of Medicine, Tehran University of Medical Sciences. Tehran, IR Iran
3 Physiology Research Center, Kerman University of Medical Sciences, Kerman, IR Iran
4 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences. Tehran, IR Iran
Article information
  • Jundishapur Journal of Microbiology: February 01, 2014, 7 (2); e8756
  • Published Online: February 1, 2014
  • Article Type: Research Article
  • Received: October 24, 2012
  • Revised: January 23, 2013
  • Accepted: February 19, 2013
  • DOI: 10.5812/jjm.8756

To Cite: Mansouri S, Kalantar Neyestanaki D, Shokoohi M, Halimi S, Beigverdi R, et al. Characterization of AmpC, CTX-M and MBLs types of β-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli producing Extended Spectrum β-lactamases in Kerman, Iran, Jundishapur J Microbiol. 2014 ; 7(2):e8756. doi: 10.5812/jjm.8756.

Copyright © 2014, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Kalantar Davoud, Mansouri Shahla. Emergence of multiple β-lactamases produced by Escherichia coli clinical isolates from hospitalized patient in Kerman, Iran. Jundishapur J Microbiol. 2011; 3(4): 137-145
  • 2. Paterson DL. Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med. 2006; 119(6 Suppl 1)-8[DOI][PubMed]
  • 3. Perez F, Endimiani A, Hujer KM, Bonomo RA. The continuing challenge of ESBLs. Curr Opin Pharmacol. 2007; 7(5): 459-69[DOI][PubMed]
  • 4. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011; 2: 65[DOI][PubMed]
  • 5. Kalantar D, Mansouri Sh, Razavi M. Emergence of imipenem resistance and presence of metallo-β-lactamases enzymes in multi drug resistant Gram negative bacilli isolated from clinical samples in Kerman, 2007-2008. J Kerman Univ Med Sci. 2010; 17: 208-14
  • 6. Shahid Mohammad, Sobia Farrukh, Singh Anuradha, Khan Haris M, Hawkey Peter M, Huq Anwar, et al. AmpC β-lactamases and bacterial resistance: an updated mini review. Rev Med Microbiol. 2009; 20(3): 41-55[DOI]
  • 7. Sundin Daniel R. Hidden Beta-Lactamases in the Enterobacteriaceae – Dropping the Extra Disks for Detection, Part II. Clin Microbiol Newsletter. 2009; 31(7): 47-52[DOI]
  • 8. Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 2008; 13(47)[PubMed]
  • 9. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010; 54(3): 969-76[DOI][PubMed]
  • 10. Cockerill Franklin R. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-first Informational Supplement. 2011;
  • 11. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005; 18(4): 657-86[DOI][PubMed]
  • 12. Song W, Jeong SH, Kim JS, Kim HS, Shin DH, Roh KH, et al. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC beta-lactamases and extended-spectrum beta-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis. 2007; 57(3): 315-8[DOI][PubMed]
  • 13. Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol. 2005; 43(7): 3129-35[DOI][PubMed]
  • 14. Brasme L, Nordmann P, Fidel F, Lartigue MF, Bajolet O, Poirel L, et al. Incidence of class A extended-spectrum beta-lactamases in Champagne-Ardenne (France): a 1 year prospective study. J Antimicrob Chemother. 2007; 60(5): 956-64[DOI][PubMed]
  • 15. Mansouri S, Shareifi S. Antimicrobial resistance pattern of Escherichia coli causing urinary tract infections, and that of human fecal flora, in the southeast of Iran. Microb Drug Resist. 2002; 8(2): 123-8[DOI][PubMed]
  • 16. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M. Distribution of blaTEM, blaSHV, blaCTX-M Genes Among Clinical Isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microbiol Drug Resistance. 2009; : 1-5
  • 17. Shahcheraghi F, Moezi H, Feizabadi MM. Distribution of TEM and SHV beta-lactamase genes among Klebsiella pneumoniae strains isolated from patients in Tehran. Med Sci Monit. 2007; 13(11)-250[PubMed]
  • 18. Shahcheraghi Fereshteh, Nasiri Siavash, Noveiri Hanieh. The Survey of Genes Encoding Beta-Lactamases, in Escherichia Coli Resistant to Beta-Lactam and Non-Beta-Lactam Antibiotics. Iran J Basic Med. 2010; 13(1): 230-237
  • 19. Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J, Bottger EC, et al. Detection of AmpC beta-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol. 2011; 49(8): 2924-32[DOI][PubMed]
  • 20. Tan TY, Ng LS, He J, Koh TH, Hsu LY. Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother. 2009; 53(1): 146-9[DOI][PubMed]
  • 21. Yum JH, Kim S, Lee H, Yong D, Lee K, Cho SN, et al. Emergence and wide dissemination of CTX-M-type ESBLs, and CMY-2- and DHA-1-type AmpC beta-lactamases in Korean respiratory isolates of Klebsiella pneumoniae. J Korean Med Sci. 2005; 20(6): 961-5[PubMed]
  • 22. Mirzaee M, Pourmand MR, Chitsaz M, Mansouri S. Antibiotic resistance to third generation cephalosporins due to CTX-Mtype extended-spectrum β-lactamases isolates of Escherichia coli. Iran J Public Health. 2009; 38(1): 10-17
  • 23. Ramazanzadeh R, Chitsaz M, Bahmani N. Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing bacteria in intensive care units of Sanandaj general hospitals (Kurdistan, Iran). Chemotherapy. 2009; 55(4): 287-92[DOI][PubMed]
  • 24. Brigante G, Luzzaro F, Perilli M, Lombardi G, Coli A, Rossolini GM, et al. Evolution of CTX-M-type beta-lactamases in isolates of Escherichia coli infecting hospital and community patients. Int J Antimicrob Agents. 2005; 25(2): 157-62[DOI][PubMed]
  • 25. Galas M, Decousser JW, Breton N, Godard T, Allouch PY, Pina P, et al. Nationwide study of the prevalence, characteristics, and molecular epidemiology of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in France. Antimicrob Agents Chemother. 2008; 52(2): 786-9[DOI][PubMed]
  • 26. Heffernan HM, Woodhouse RE, Pope CE, Blackmore TK. Prevalence and types of extended-spectrum beta-lactamases among urinary Escherichia coli and Klebsiella spp. in New Zealand. Int J Antimicrob Agents. 2009; 34(6): 544-9[DOI][PubMed]
  • 27. Mohamed Al-Agamy MH, El-Din Ashour MS, Wiegand I. First description of CTX-M beta-lactamase-producing clinical Escherichia coli isolates from Egypt. Int J Antimicrob Agents. 2006; 27(6): 545-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments