Jundishapur Journal of Microbiology

Published by: Kowsar

Study of polyols production by Yarrowia lipolytica in batch culture and optimization of growth condition for maximum production

Gholam Ghezelbash 1 , Iraj Nahvi 1 , * and Mohammad Rabbani 1
Authors Information
1 Department of Biology, Faculty of Science, University of Isfahan, Isfahan, IR Iran
Article information
  • Jundishapur Journal of Microbiology: September 01, 2012, 5 (4); 546-549
  • Published Online: September 9, 2012
  • Article Type: Research Article
  • Received: November 13, 2011
  • Revised: March 6, 2012
  • Accepted: March 6, 2012
  • DOI: 10.5812/jjm.3524

To Cite: Ghezelbash G, Nahvi I, Rabbani M. Study of polyols production by Yarrowia lipolytica in batch culture and optimization of growth condition for maximum production, Jundishapur J Microbiol. 2012 ; 5(4):546-549. doi: 10.5812/jjm.3524.

Abstract
Copyright © 2012, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Hallsworth JE, Magan N. Culture Age, Temperature, and pH Affect the Polyol and Trehalose Contents of Fungal Propagules. Appl Environ Microbiol. 1996; 62(7): 2435-42[PubMed]
  • 2. Carpenter JF, Crowe JH. Modes of stabilization of a protein by organic solutes during desiccation. Cryobiology. 1988; 25(5): 459-70[DOI]
  • 3. Chirife J, Favetto G, Ferro Fontan C. Microbial growth at reduced water activities: some physicochemical properties of compatible solutes. J Appl Bacteriol. 1984; 56(2): 259-68[DOI]
  • 4. Kim KA, Noh BS, Lee JK, Kim SY, Park YC, Oh DK. Optimization of culture conditions for erythritol production by Torula sp. J Microbiol Biotechnol. 2000; 10(1): 69-74
  • 5. Moon HJ, Jeya M, Kim IW, Lee JK. Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol. 2010; 86(4): 1017-25[DOI][PubMed]
  • 6. Park YC, Lee DY, Lee DH, Kim HJ, Ryu YW, Seo JH. Proteomics and physiology of erythritol-producing strains. J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 815(1-2): 251-60[DOI][PubMed]
  • 7. Ishizuka H, Wako K, Kasumi T, Sasaki T. Breeding of a mutant of Aureobasidium sp. with high erythritol production. J Ferment Bioeng. 1989; 68(5): 310-4[DOI]
  • 8. Lee JK, Ha SJ, Kim SY, Oh DK. Increased erythritol production in Torula sp. by Mn2+ and Cu2+. Biotechnol Lett. 2000; 22(12): 983-6[DOI]
  • 9. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959; 31(3): 426-8[DOI]
  • 10. Yang SW, Park JB, Soo Han N, Ryu YW, Seo JH. Production of erythritol from glucose by an osmophilic mutant of Candida magnoliae. Biotechnol Lett. 1999; 21(10): 887-90[DOI]
  • 11. Lee KJ, Lim JY. Optimized conditions for high erythritol production by Penicillium sp. KJ-UV29, mutant of Penicillium sp. KJ81. Biotechnol Bioprocess Eng. 2003; 8(3): 173-8[DOI]
  • 12. Bok SH, Demain AL. An improved colorimetric assay for polyols. Anal Biochem. 1977; 81(1): 18-20[DOI]
  • 13. Savergave LS, Gadre RV, Narayanan BK. Strain improvement and statistical media optimization for enhanced erythritol production with minimal by-products from Candida magnoliae mutant R23. Biochem Eng J. 2011; 55(2): 92-100[DOI]
  • 14. Wako K, Ishizuka H, Kawaguchi G, Kubo N, Kasumi T, Hayashi K. Erythritol production by Aureobasidium sp. SN-115. J Ferment Technol. 1988; 66(4): 479-83[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments