Jundishapur Journal of Microbiology

Published by: Kowsar
IF: 0.957
Cite Score:
1.46
THOMSON REUTERS - SCOPUS

Virulence Factor and Biofilm Formation in Clinical Enterococcal Isolates of the West of Iran

Mahsa Kashef 1 , 2 , Amirhooshang Alvandi 1 , Banafshe Hasanvand 1 , 2 , Mohsen Azizi 1 , 2 and Ramin Abiri 1 , *
Authors Information
1 Microbiology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
2 Students Research Committee, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
Article information
  • Jundishapur Journal of Microbiology: July 2017, 10 (7); e14379
  • Published Online: June 12, 2017
  • Article Type: Research Article
  • Received: November 4, 2016
  • Revised: April 18, 2017
  • Accepted: May 17, 2017
  • DOI: 10.5812/jjm.14379

To Cite: Kashef M, Alvandi A, Hasanvand B, Azizi M, Abiri R. Virulence Factor and Biofilm Formation in Clinical Enterococcal Isolates of the West of Iran, Jundishapur J Microbiol. 2017 ; 10(7):e14379. doi: 10.5812/jjm.14379.

Abstract
Copyright © 2017, Jundishapur Journal of Microbiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
References
  • 1. Sherman JM. The Streptococci. Bacteriol Rev. 1937; 1(1): 3-97[PubMed]
  • 2. Jett BD, Huycke MM, Gilmore MS. Virulence of enterococci. Clin Microbiol Rev. 1994; 7(4): 462-78[DOI][PubMed]
  • 3. Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000; 21(8): 510-5[DOI][PubMed]
  • 4. Wisplinghoff H, Seifert H, Tallent SM, Bischoff T, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr Infect Dis J. 2003; 22(8): 686-91[DOI][PubMed]
  • 5. Elsner HA, Sobottka I, Mack D, Claussen M, Laufs R, Wirth R. Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates. Eur J Clin Microbiol Infect Dis. 2000; 19(1): 39-42[PubMed]
  • 6. Singh KV, Qin X, Weinstock GM, Murray BE. Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. J Infect Dis. 1998; 178(5): 1416-20[DOI][PubMed]
  • 7. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, et al. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother. 1993; 37(11): 2474-7[DOI][PubMed]
  • 8. Huycke MM, Spiegel CA, Gilmore MS. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 1991; 35(8): 1626-34[DOI][PubMed]
  • 9. Ike Y, Hashimoto H, Clewell DB. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun. 1984; 45(2): 528-30[PubMed]
  • 10. Jett BD, Jensen HG, Nordquist RE, Gilmore MS. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun. 1992; 60(6): 2445-52[PubMed]
  • 11. Booth MC, Bogie CP, Sahl HG, Siezen RJ, Hatter KL, Gilmore MS. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol. 1996; 21(6): 1175-84[DOI][PubMed]
  • 12. Sahl HG, Bierbaum G. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol. 1998; 52: 41-79[DOI][PubMed]
  • 13. Carniol K, Gilmore MS. Signal transduction, quorum-sensing, and extracellular protease activity in Enterococcus faecalis biofilm formation. J Bacteriol. 2004; 186(24): 8161-3[DOI][PubMed]
  • 14. Mohamed JA, Huang DB. Biofilm formation by enterococci. J Med Microbiol. 2007; 56: 1581-8[DOI][PubMed]
  • 15. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15(2): 167-93[DOI][PubMed]
  • 16. O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000; 54: 49-79[DOI][PubMed]
  • 17. Duggan JM, Sedgley CM. Biofilm formation of oral and endodontic Enterococcus faecalis. J Endod. 2007; 33(7): 815-8[DOI][PubMed]
  • 18. Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun. 2001; 69(7): 4366-72[DOI][PubMed]
  • 19. Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS. Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun. 1999; 67(1): 193-200[PubMed]
  • 20. Leavis H, Top J, Shankar N, Borgen K, Bonten M, van Embden J, et al. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J Bacteriol. 2004; 186(3): 672-82[DOI][PubMed]
  • 21. Eaton TJ, Gasson MJ. A variant enterococcal surface protein Esp(fm) in Enterococcus faecium; distribution among food, commensal, medical, and environmental isolates. FEMS Microbiol Lett. 2002; 216(2): 269-75[DOI][PubMed]
  • 22. Heikens E, Bonten MJ, Willems RJ. Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol. 2007; 189(22): 8233-40[DOI][PubMed]
  • 23. Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun. 2004; 72(10): 6032-9[DOI][PubMed]
  • 24. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans AD, de Vos WM, et al. Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol. 2001; 41(1): 145-54[DOI][PubMed]
  • 25. Zeng J, Teng F, Murray BE. Gelatinase is important for translocation of Enterococcus faecalis across polarized human enterocyte-like T84 cells. Infect Immun. 2005; 73(3): 1606-12[DOI][PubMed]
  • 26. Sartingen S, Rozdzinski E, Muscholl-Silberhorn A, Marre R. Aggregation substance increases adherence and internalization, but not translocation, of Enterococcus faecalis through different intestinal epithelial cells in vitro. Infect Immun. 2000; 68(10): 6044-7[DOI][PubMed]
  • 27. Rozdzinski E, Marre R, Susa M, Wirth R, Muscholl-Silberhorn A. Aggregation substance-mediated adherence of Enterococcus faecalis to immobilized extracellular matrix proteins. Microb Pathog. 2001; 30(4): 211-20[DOI][PubMed]
  • 28. Sussmuth SD, Muscholl-Silberhorn A, Wirth R, Susa M, Marre R, Rozdzinski E. Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect Immun. 2000; 68(9): 4900-6[DOI][PubMed]
  • 29. Isenmann R, Schwarz M, Rozdzinski E, Marre R, Beger HG. Aggregation substance promotes colonic mucosal invasion of Enterococcus faecalis in an ex vivo model. J Surg Res. 2000; 89(2): 132-8[DOI][PubMed]
  • 30. Baldassarri L, Bertuccini L, Ammendolia MG, Gherardi G, Creti R. Variant esp gene in vancomycin-sensitive Enterococcus faecium. Lancet. 2001; 357(9270): 1802[DOI][PubMed]
  • 31. Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007; 115(8): 891-9[DOI][PubMed]
  • 32. Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001; 45(4): 999-1007[DOI][PubMed]
  • 33. Yasuda H, Ajiki Y, Aoyama J, Yokota T. Interaction between human polymorphonuclear leucocytes and bacteria released from in-vitro bacterial biofilm models. J Med Microbiol. 1994; 41(5): 359-67[DOI][PubMed]
  • 34. Azizi O, Shakibaie MR, Modarresi F, Shahcheraghi F. Molecular Detection of Class-D OXA Carbapenemase Genes in Biofilm and Non-Biofilm Forming Clinical Isolates of Acinetobacter baumannii. Jundishapur J Microbiol. 2015; 8(1)[DOI][PubMed]
  • 35. Baldassarri L, Creti R, Recchia S, Pataracchia M, Alfarone G, Orefici G, et al. Virulence factors in enterococcal infections of orthopedic devices. Int J Artif Organs. 2006; 29(4): 402-6[PubMed]
  • 36. Sharifi Y, Hasani A, Ghotaslou R, Naghili B, Aghazadeh M, Milani M, et al. Virulence and antimicrobial resistance in enterococci isolated from urinary tract infections. Adv Pharm Bull. 2013; 3(1): 197-201[DOI][PubMed]
  • 37. Worth LJ, Slavin MA, Vankerckhoven V, Goossens H, Grabsch EA, Thursky KA. Virulence determinants in vancomycin-resistant Enterococcus faecium vanB: clonal distribution, prevalence and significance of esp and hyl in Australian patients with haematological disorders. J Hosp Infect. 2008; 68(2): 137-44[DOI][PubMed]
  • 38. Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med. 2004; 15(5): 308-20[PubMed]
  • 39. Sedgley CM, Molander A, Flannagan SE, Nagel AC, Appelbe OK, Clewell DB, et al. Virulence, phenotype and genotype characteristics of endodontic Enterococcus spp. Oral Microbiol Immunol. 2005; 20(1): 10-9[DOI][PubMed]
  • 40. Nakayama J, Tanaka E, Kariyama R, Nagata K, Nishiguchi K, Mitsuhata R, et al. Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis. J Bacteriol. 2007; 189(4): 1358-65[DOI][PubMed]
  • 41. Moniri R, Ghasemi A, Moosavi SGA, Dastehgoli K, Rezaei M. Virulence gene’s relationship with biofilm formation and detection of aac (6’)/aph (2”) in enterococcus faecalis isolated from patients with urinary tract infection. Jundishapur J Microbiol. 2013; 6(5)[DOI]
  • 42. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, et al. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol. 2001; 67(10): 4538-45[PubMed]
  • 43. Di Rosa R, Creti R, Venditti M, D'Amelio R, Arciola CR, Montanaro L, et al. Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium. FEMS Microbiol Lett. 2006; 256(1): 145-50[DOI][PubMed]
  • 44. Dupre I, Zanetti S, Schito AM, Fadda G, Sechi LA. Incidence of virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). J Med Microbiol. 2003; 52: 491-8[DOI][PubMed]
  • 45. Hancock LE, Perego M. Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol. 2004; 186(23): 7951-8[DOI][PubMed]
  • 46. Kristich CJ, Li YH, Cvitkovitch DG, Dunny GM. Esp-independent biofilm formation by Enterococcus faecalis. J Bacteriol. 2004; 186(1): 154-63[DOI][PubMed]
  • 47. Raad ,I, Hanna HA, Boktour M, Chaiban G, Hachem RY, Dvorak T, et al. Vancomycin-resistant Enterococcus faecium: catheter colonization, esp gene, and decreased susceptibility to antibiotics in biofilm. Antimicrob Agents Chemother. 2005; 49(12): 5046-50[DOI][PubMed]
  • 48. Tendolkar PM, Baghdayan AS, Shankar N. The N-terminal domain of enterococcal surface protein, Esp, is sufficient for Esp-mediated biofilm enhancement in Enterococcus faecalis. J Bacteriol. 2005; 187(17): 6213-22[DOI][PubMed]
  • 49. Pultz NJ, Shankar N, Baghdayan AS, Donskey CJ. Enterococcal surface protein Esp does not facilitate intestinal colonization or translocation of Enterococcus faecalis in clindamycin-treated mice. FEMS Microbiol Lett. 2005; 242(2): 217-9[DOI][PubMed]
  • 50. Heikens E, Leendertse M, Wijnands LM, van Luit-Asbroek M, Bonten MJ, van der Poll T, et al. Enterococcal surface protein Esp is not essential for cell adhesion and intestinal colonization of Enterococcus faecium in mice. BMC Microbiol. 2009; 9: 19[DOI][PubMed]
  • 51. Franz CM, Muscholl-Silberhorn AB, Yousif NM, Vancanneyt M, Swings J, Holzapfel WH. Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl Environ Microbiol. 2001; 67(9): 4385-9[PubMed]
  • 52. Coque TM, Patterson JE, Steckelberg JM, Murray BE. Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis. 1995; 171(5): 1223-9[PubMed]
  • 53. Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, Di Rosa R, et al. Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J Med Microbiol. 2004; 53: 13-20[DOI][PubMed]
  • 54. Eaton TJ, Gasson MJ. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol. 2001; 67(4): 1628-35[DOI][PubMed]
  • 55. Jurkovic D, Krizkova L, Dusinsky R, Belicova A, Sojka M, Krajcovic J, et al. Identification and characterization of enterococci from bryndza cheese. Lett Appl Microbiol. 2006; 42(6): 553-9[DOI][PubMed]
  • 56. Tsikrikonis G, Maniatis AN, Labrou M, Ntokou E, Michail G, Daponte A, et al. Differences in biofilm formation and virulence factors between clinical and fecal enterococcal isolates of human and animal origin. Microb Pathog. 2012; 52(6): 336-43[DOI][PubMed]
  • 57. Mannu L, Paba A, Daga E, Comunian R, Zanetti S, Dupre I, et al. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int J Food Microbiol. 2003; 88(2-3): 291-304[DOI][PubMed]
  • 58. Seno Y, Kariyama R, Mitsuhata R, Monden K, Kumon H. Clinical implications of biofilm formation by Enterococcus faecalis in the urinary tract. Acta Med Okayama. 2005; 59(3): 79-87[PubMed]
  • 59. Udo EE, Al-Sweih N. Frequency of virulence-associated genes in Enterococccus faecalis isolated in Kuwait hospitals. Med Princ Pract. 2011; 20(3): 259-64[DOI][PubMed]
  • 60. Jett BD, Gilmore MS. The growth-inhibitory effect of the Enterococcus faecalis bacteriocin encoded by pAD1 extends to the oral streptococci. J Dent Res. 1990; 69(10): 1640-5[DOI][PubMed]
  • 61. Cosentino S, Podda GS, Corda A, Fadda ME, Deplano M, Pisano MB. Molecular detection of virulence factors and antibiotic resistance pattern in clinical Enterococcus faecalis strains in Sardinia. J Prev Med Hyg. 2010; 51(1): 31-6[PubMed]
  • 62. Abriouel H, Omar NB, Molinos AC, Lopez RL, Grande MJ, Martinez-Viedma P, et al. Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int J Food Microbiol. 2008; 123(1-2): 38-49[DOI][PubMed]
  • 63. Bittencourt de Marques E, Suzart S. Occurrence of virulence-associated genes in clinical Enterococcus faecalis strains isolated in Londrina, Brazil. J Med Microbiol. 2004; 53: 1069-73[DOI][PubMed]
Readers' Comments