Jundishapur Journal of Microbiology

Published by: Kowsar

Establishment of MDCK/FX Cell for Efficient Replication of Influenza Viruses

Hadi Fazel 1 , Shahla Shahsavandi 2 , Homayoon Mahravani 2 , Farhad Rezaei 1 , Jila Yavarian 1 , Nazanin Zahra Shafiiei-Jandaghi 1 and Talat Mokhtari Azad 1 , *
Authors Information
1 Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
Article information
  • Jundishapur Journal of Microbiology: May 2017, 10 (5); e44891
  • Published Online: May 7, 2017
  • Article Type: Research Article
  • Received: December 19, 2016
  • Revised: March 5, 2017
  • Accepted: April 5, 2017
  • DOI: 10.5812/jjm.44891

To Cite: Fazel H, Shahsavandi S, Mahravani H, Rezaei F, Yavarian J, et al. Establishment of MDCK/FX Cell for Efficient Replication of Influenza Viruses, Jundishapur J Microbiol. 2017 ; 10(5):e44891. doi: 10.5812/jjm.44891.

Copyright © 2017, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Feng SZ, Jiao PR, Qi WB, Fan HY, Liao M. Development and strategies of cell-culture technology for influenza vaccine. Appl Microbiol Biotechnol. 2011; 89(4): 893-902[DOI][PubMed]
  • 2. Hussain AI, Cordeiro M, Sevilla E, Liu J. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells. Vaccine. 2010; 28(22): 3848-55[DOI][PubMed]
  • 3. Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000; 69: 531-69[DOI][PubMed]
  • 4. Bertram S, Glowacka I, Steffen I, Kuhl A, Pohlmann S. Novel insights into proteolytic cleavage of influenza virus hemagglutinin. Rev Med Virol. 2010; 20(5): 298-310[DOI][PubMed]
  • 5. Bosch FX, Garten W, Klenk HD, Rott R. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses. Virology. 1981; 113(2): 725-35[PubMed]
  • 6. Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell. 1998; 95(3): 409-17[PubMed]
  • 7. Kido H, Okumura Y, Takahashi E, Pan HY, Wang S, Chida J, et al. Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses. J Mol Genet Med. 2008; 3(1): 167-75[PubMed]
  • 8. Bottcher-Friebertshauser E, Freuer C, Sielaff F, Schmidt S, Eickmann M, Uhlendorff J, et al. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J Virol. 2010; 84(11): 5605-14[DOI][PubMed]
  • 9. Okumura Y, Takahashi E, Yano M, Ohuchi M, Daidoji T, Nakaya T, et al. Novel type II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication. J Virol. 2010; 84(10): 5089-96[DOI][PubMed]
  • 10. Shahsavandi S, Ebrahimi MM, Mohammadi A, Zarrin Lebas N. Impact of chicken-origin cells on adaptation of a low pathogenic influenza virus. Cytotechnology. 2013; 65(3): 419-24[DOI][PubMed]
  • 11. Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 2006; 80(19): 9896-8[DOI][PubMed]
  • 12. Klenk HD, Rott R, Orlich M, Blodorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975; 68(2): 426-39[PubMed]
  • 13. Gotoh B, Ogasawara T, Toyoda T, Inocencio NM, Hamaguchi M, Nagai Y. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 1990; 9(12): 4189-95[PubMed]
  • 14. Gotoh B, Yamauchi F, Ogasawara T, Nagai Y. Isolation of factor Xa from chick embryo as the amniotic endoprotease responsible for paramyxovirus activation. FEBS Letters. 1992; 296(3): 274-8[DOI]
  • 15. Ogasawara T, Gotoh B, Suzuki H, Asaka J, Shimokata K, Rott R, et al. Expression of factor X and its significance for the determination of paramyxovirus tropism in the chick embryo. EMBO J. 1992; 11(2): 467-72[PubMed]
  • 16. Shahsavandi S, Ebrahimi MM, Masoudi S, Izadi H. Expression of factor X in BHK-21 cells promotes low pathogenic influenza viruses replication. Adv Virol. 2015; [DOI]
  • 17. Fazel H, Shahsavandi S, Masoudi S, Ebrahimi MM, Taghizadeh M. Evolutionary characterization of non-structural gene of H9N2 influenza viruses isolated from Asia during 2008-2012. Comp Clin Pathol. 2014; 23(3): 523-8[DOI]
  • 18. Tombari W, Nsiri J, Larbi I, Guerin JL, Ghram A. Genetic evolution of low pathogenecity H9N2 avian influenza viruses in Tunisia: acquisition of new mutations. Virol J. 2011; 8: 467[DOI][PubMed]
  • 19. Asaoka N, Tanaka Y, Sakai T, Fujii Y, Ohuchi R, Ohuchi M. Low growth ability of recent influenza clinical isolates in MDCK cells is due to their low receptor binding affinities. Microbes Infect. 2006; 8(2): 511-9[DOI][PubMed]
  • 20. Ilyushina NA, Ikizler MR, Kawaoka Y, Rudenko LG, Treanor JJ, Subbarao K, et al. Comparative study of influenza virus replication in MDCK cells and in primary cells derived from adenoids and airway epithelium. J Virol. 2012; 86(21): 11725-34[DOI][PubMed]
  • 21. Venkateswarlu D, Perera L, Darden T, Pedersen LG. Structure and dynamics of zymogen human blood coagulation factor X. Biophys J. 2002; 82(3): 1190-206[DOI][PubMed]
  • 22. Shahsavandi S, Ebrahimi MM, Sadeghi K, Mosavi SZ, Mohammadi A. Dose- and time-dependent apoptosis induced by avian H9N2 influenza virus in human cells. BioMed Res Inter. 2013; 2013: 1-7[DOI]
  • 23. Frensing T, Kupke SY, Bachmann M, Fritzsche S, Gallo-Ramirez LE, Reichl U. Influenza virus intracellular replication dynamics, release kinetics, and particle morphology during propagation in MDCK cells. Appl Microbiol Biotechnol. 2016; 100(16): 7181-92[DOI][PubMed]
  • 24. Gabriel G, Abram M, Keiner B, Wagner R, Klenk HD, Stech J. Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J Virol. 2007; 81(17): 9601-4[DOI][PubMed]
  • 25. ZarrinLebas N, Shahsavandi S, Mohammadi A, Ebrahimi MM, Bakhshesh M. Replication efficiency of influenza A virus H9N2: a comparative analysis between different origin cell types. Jundishapur J Microbiol. 2013; 6(9)[DOI]
  • 26. Matrosovich M, Matrosovich T, Carr J, Roberts NA, Klenk HD. Overexpression of the alpha-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. J Virol. 2003; 77(15): 8418-25[PubMed]
  • 27. Oh DY, Barr IG, Mosse JA, Laurie KL. MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells. J Clin Microbiol. 2008; 46(7): 2189-94[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments