Jundishapur Journal of Microbiology

Published by: Kowsar

Development of a Polymerase Chain Reaction-Temporal Temperature Gradient Gel Electrophoresis Assay for Identification of Salmonella enterica Subspecies enterica Using a Hypothetical Non-specific Endonucleas S. entericae Gene Sequence

Maryam Besharati 1 , 2 , 3 , Ahmad Reza Bahrami 1 , 2 , * , Mansour Mashreghi 1 , 4 , Maryam Matin 1 , 2 and Monireh Bahrami 1 , 2
Authors Information
1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, IR Iran
2 Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, IR Iran
3 Department of Microbial Biotechnology, Microbial Technology and Products Research Center, College of Science, University of Tehran, Tehran 14155-6455, IR Iran
4 Center of Nano Research, Ferdowsi University of Mashhad, Mashhad, Iran
Article information
  • Jundishapur Journal of Microbiology: April 2017, 10 (4); e42021
  • Published Online: February 22, 2017
  • Article Type: Research Article
  • Received: September 2, 2016
  • Revised: December 15, 2016
  • Accepted: January 24, 2017
  • DOI: 10.5812/jjm.42021

To Cite: Besharati M, Bahrami A R, Mashreghi M, Matin M, Bahrami M. Development of a Polymerase Chain Reaction-Temporal Temperature Gradient Gel Electrophoresis Assay for Identification of Salmonella enterica Subspecies enterica Using a Hypothetical Non-specific Endonucleas S. entericae Gene Sequence, Jundishapur J Microbiol. 2017 ; 10(4):e42021. doi: 10.5812/jjm.42021.

Abstract
Copyright © 2017, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DMA, Jensen AB, Wegener HC, et al. Global Monitoring ofSalmonellaSerovar Distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of Quality Assured Laboratories from 2001 to 2007. Foodborne Pathogens Dis. 2011; 8(8): 887-900[DOI]
  • 2. Barrow PA, Methner U. Salmonella in domestic animals. 2013; [DOI]
  • 3. Dhama K, Rajagunalan S, Chakraborty S, Verma AK, Kumar A, Tiwari R, et al. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: a review. Pak J Biol Sci. 2013; 16(20): 1076-85[PubMed]
  • 4. Schonenbrucher V, Mallinson ET, Bulte M. A comparison of standard cultural methods for the detection of foodborne Salmonella species including three new chromogenic plating media. Int J Food Microbiol. 2008; 123(1-2): 61-6[DOI][PubMed]
  • 5. Wattiau P, Boland C, Bertrand S. Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Appl Environ Microbiol. 2011; 77(22): 7877-85[DOI][PubMed]
  • 6. Lee KM, Runyon M, Herrman TJ, Phillips R, Hsieh J. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control. 2015; 47: 264-76[DOI]
  • 7. Myers RM, Fischer SG, Lerman LS, Maniatis T. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 1985; 13(9): 3131-45[PubMed]
  • 8. Anderson PN, Hume ME, Byrd JA, Hernandez C, Stevens SM, Stringfellow K, et al. Evaluation of repetitive extragenic palindromic-polymerase chain reaction and denatured gradient gel electrophoresis in identifying Salmonella serotypes isolated from processed turkeys. Poult Sci. 2010; 89(6): 1293-300[DOI][PubMed]
  • 9. Maciel BM, Marques EL, Dias JC, Santos TF, Romano CC, Brendel M, et al. Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA to monitor changes in mouse gut bacterial communities during Salmonella enterica serovar Enteritidis latent infection. Genet Mol Res. 2013; 12(3): 2611-7[DOI][PubMed]
  • 10. Pui CF, Wong WC, Chai LC, Lee HY, Noorlis A, Zainazor TC, et al. Multiplex PCR for the concurrent detection and differentiation of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium. Trop Med Health. 2011; 39(1): 9-15[DOI][PubMed]
  • 11. Silva DSP, Canato T, Magnani M, Alves J, Hirooka EY, de Oliveira TCRM. Multiplex PCR for the simultaneous detection of Salmonella spp. and Salmonella Enteritidis in food. Int J Food Sci Technol. 2011; 46(7): 1502-7[DOI]
  • 12. Miller M A, Sentz J, Rabaa M A, Mintz ED. Global epidemiology of infections due to Shigella, Salmonella serotype Typhi, and enterotoxigenic Escherichia coli. Epidemiol Infect. 2008; 136(4)[DOI]
  • 13. Pangloli P, Dje Y, Ahmed O, Doane CA, Oliver SP, Draughon FA. Seasonal incidence and molecular characterization of Salmonella from dairy cows, calves, and farm environment. Foodborne Pathog Dis. 2008; 5(1): 87-96[DOI][PubMed]
  • 14. Amavisit P, Browning GF, Lightfoot D, Church S, Anderson GA, Whithear KG, et al. Rapid PCR detection of Salmonella in horse faecal samples. Vet Microbiol. 2001; 79(1): 63-74[PubMed]
  • 15. McKillip JL, Drake M. Real-time nucleic acid-based detection methods for pathogenic bacteria in food. J Food Prot. 2004; 67(4): 823-32[PubMed]
  • 16. Ercolini D. PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods. 2004; 56(3): 297-314[DOI][PubMed]
  • 17. Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol. 1999; 2(3): 317-22[DOI][PubMed]
  • 18. Farnleitner AH, Kreuzinger N, Kavka GG, Grillenberger S, Rath J, Mach RL. Simultaneous detection and differentiation of Escherichia coli populations from environmental freshwaters by means of sequence variations in a fragment of the beta-D-glucuronidase gene. Appl Environ Microbiol. 2000; 66(4): 1340-6[PubMed]
  • 19. Aabo S, Rasmussen OF, Roseen L, Sørensen PD, Olsen JE. Salmonella identification by the polymerase chain reaction. Mol Cell Probes. 1993; 7(3): 171-8[DOI]
  • 20. Jamshidi A, Kalidari GA, Hedayati M. Isolation and Identification Ofsalmonellaenteritidis Andsalmonellatyphimurium from the Eggs of Retail Stores in Mashhad, Iran Using Conventional Culture Method and Multiplex Pcr Assay. J Food Safety. 2010; [DOI]
  • 21. Lee SH, Jung BY, Rayamahji N, Lee HS, Jeon WJ, Choi KS, et al. A multiplex real-time PCR for differential detection and quantification of Salmonella spp., Salmonella enterica serovar Typhimurium and Enteritidis in meats. J Vet Sci. 2009; 10(1): 43-51[PubMed]
  • 22. Roudiere L, Jacquot A, Marchandin H, Aujoulat F, Devine R, Zorgniotti I, et al. Optimized PCR-Temporal Temperature Gel Electrophoresis compared to cultivation to assess diversity of gut microbiota in neonates. J Microbiol Methods. 2009; 79(2): 156-65[DOI][PubMed]
  • 23. Yoshino K, Nishigaki K, Husimi Y. Temperature sweep gel electrophoresis: a simple method to detect point mutations. Nucleic Acids Res. 1991; 19(11): 3153[PubMed]
  • 24. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek. 1998; 73(1): 127-41[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments