Jundishapur Journal of Microbiology

Published by: Kowsar

Characterization of the Same Mutations in FCA1 Gene Associated With 5-FC Resistance of Candida albicans

Xi-Ren Deng 1 , 2 , Fu-Cai Wang 1 , Mu-Ying Ying 1 , Jie-Yu Zhang 3 , Ying Ying 1 , Ling-Bing Zeng 4 , Xue-Fei Hu 4 , Ke Wang 1 , Qiong Liu 1 and Xiao-Tian Huang 1 , 2 , *
Authors Information
1 School of Medicine, Nanchang University, Nanchang 330006, China
2 Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang 330006, China
3 Department of Pathophysiology, Fuzhou Medical School, Nanchang University, Fuzhou 344000, China
4 Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China
Article information
  • Jundishapur Journal of Microbiology: August 2017, 10 (8); e12952
  • Published Online: July 24, 2017
  • Article Type: Brief Report
  • Received: February 11, 2017
  • Revised: May 13, 2017
  • Accepted: June 24, 2017
  • DOI: 10.5812/jjm.12952

To Cite: Deng X, Wang F, Ying M, Zhang J, Ying Y, et al. Characterization of the Same Mutations in FCA1 Gene Associated With 5-FC Resistance of Candida albicans, Jundishapur J Microbiol. 2017 ; 10(8):e12952. doi: 10.5812/jjm.12952.

Abstract
Copyright © 2017, Jundishapur Journal of Microbiology. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
5.1. Conclusion
Acknowledgements
Footnotes
References
  • 1. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486(7402): 207-14[DOI][PubMed]
  • 2. Chen S, Slavin M, Nguyen Q, Marriott D, Playford EG, Ellis D, et al. Active surveillance for candidemia, Australia. Emerg Infect Dis. 2006; 12(10): 1508-16[DOI][PubMed]
  • 3. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007; 20(1): 133-63[DOI][PubMed]
  • 4. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016; 62(4): 1-50[DOI][PubMed]
  • 5. Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ. Guidelines for treatment of candidiasis. Clin Infect Dis. 2004; 38(2): 161-89[DOI][PubMed]
  • 6. Odds FC, Bernaerts R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J Clin Microbiol. 1994; 32(8): 1923-9[PubMed]
  • 7. Murray MP, Zinchuk R, Larone DH. CHROMagar Candida as the sole primary medium for isolation of yeasts and as a source medium for the rapid-assimilation-of-trehalose test. J Clin Microbiol. 2005; 43(3): 1210-2[DOI][PubMed]
  • 8. Horvath LL, Hospenthal DR, Murray CK, Dooley DP. Direct isolation of Candida spp. from blood cultures on the chromogenic medium CHROMagar Candida. J Clin Microbiol. 2003; 41(6): 2629-32[PubMed]
  • 9. Graf B, Adam T, Zill E, Gobel UB. Evaluation of the VITEK 2 system for rapid identification of yeasts and yeast-like organisms. J Clin Microbiol. 2000; 38(5): 1782-5[PubMed]
  • 10. Sariguzel FM, Berk E, Koc AN, Sav H, Aydemir G. Evaluation of chromogenic agar, [corrected] VITEK2 YST and VITEK(R) MS for identification of Candida strains isolated from blood cultures. Infez Med. 2015; 23(4): 318-22[PubMed]
  • 11. Chang HC, Leaw SN, Huang AH, Wu TL, Chang TC. Rapid identification of yeasts in positive blood cultures by a multiplex PCR method. J Clin Microbiol. 2001; 39(10): 3466-71[DOI][PubMed]
  • 12. Luo G, Mitchell TG. Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J Clin Microbiol. 2002; 40(8): 2860-5[PubMed]
  • 13. Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, Lafe K, Bui U, et al. Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol. 2001; 39(11): 4042-51[DOI][PubMed]
  • 14. C.L.S.I. . Reference method for broth dilution antifungal susceptibility testing of yeasts. 2008;
  • 15. Dassanayake RS, Ellepola AN, Samaranayake YH, Samaranayak LP. Molecular heterogeneity of fluconazole-resistant and -susceptible oral Candida albicans isolates within a single geographic locale. APMIS. 2002; 110(4): 315-24[PubMed]
  • 16. Dodgson AR, Dodgson KJ, Pujol C, Pfaller MA, Soll DR. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob Agents Chemother. 2004; 48(6): 2223-7[DOI][PubMed]
  • 17. Arendrup MC, Bruun B, Christensen JJ, Fuursted K, Johansen HK, Kjaeldgaard P, et al. National surveillance of fungemia in Denmark (2004 to 2009). J Clin Microbiol. 2011; 49(1): 325-34[DOI][PubMed]
  • 18. Schmalreck AF, Willinger B, Haase G, Blum G, Lass-Florl C, Fegeler W, et al. Species and susceptibility distribution of 1062 clinical yeast isolates to azoles, echinocandins, flucytosine and amphotericin B from a multi-centre study. Mycoses. 2012; 55(3)-37[DOI][PubMed]
  • 19. Pongracz J, Juhasz E, Ivan M, Kristof K. Significance of yeasts in bloodstream infection: Epidemiology and predisposing factors of Candidaemia in adult patients at a university hospital (2010-2014). Acta Microbiol Immunol Hung. 2015; 62(3): 317-29[DOI][PubMed]
  • 20. Pfaller MA, Castanheira M, Messer SA, Jones RN. In vitro antifungal susceptibilities of isolates of Candida spp. and Aspergillus spp. from China to nine systemically active antifungal agents: data from the SENTRY antifungal surveillance program, 2010 through 2012. Mycoses. 2015; 58(4): 209-14[DOI][PubMed]
  • 21. Whelan WL, Kerridge D. Decreased activity of UMP pyrophosphorylase associated with resistance to 5-fluorocytosine in Candida albicans. Antimicrob Agents Chemother. 1984; 26(4): 570-4[PubMed]
  • 22. Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, et al. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother. 2005; 49(6): 2226-36[DOI][PubMed]
  • 23. Whelan WL. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans. Crit Rev Microbiol. 1987; 15(1): 45-56[DOI][PubMed]
  • 24. White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998; 11(2): 382-402[PubMed]
  • 25. Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother. 2004; 48(11): 4377-86[DOI][PubMed]
  • 26. Quinto-Alemany D, Canerina-Amaro A, Hernandez-Abad LG, Machin F, Romesberg FE, Gil-Lamaignere C. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis. PLoS One. 2012; 7(7)[DOI][PubMed]
  • 27. McManus BA, Moran GP, Higgins JA, Sullivan DJ, Coleman DC. A Ser29Leu substitution in the cytosine deaminase Fca1p is responsible for clade-specific flucytosine resistance in Candida dubliniensis. Antimicrob Agents Chemother. 2009; 53(11): 4678-85[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments